当前位置: X-MOL 学术Chem. Eng. Res. Des. › 论文详情
Neural network modeling based double-population chaotic accelerated particle swarm optimization and diffusion theory for solubility prediction
Chemical Engineering Research and Design ( IF 3.350 ) Pub Date : 2020-01-13 , DOI: 10.1016/j.cherd.2020.01.003
Mengshan Li, Suyun Lian, Fan Wang, Yanying Zhou, Bingsheng Chen, Lixin Guan, Yan Wu

Solubility is as a key chemical and physical property. Solubility prediction methods are applied in diverse fields including preparation synthesis and modifications of materials. To overcome the shortcomings of existing solubility prediction methods, taking the mass transfer of two-phase system as an example, a solubility prediction model based on the diffusion theory and hybrid artificial intelligence method was proposed in this paper. An improved double-population chaotic accelerated particle swarm optimization (APSO) algorithm combined diffusion theory was developed according to the particle evolution utilizing diffusion energy. The developed algorithm was applied in the training of parameters of the radial basis function artificial neural network and then a model for predicting solubility was developed. The experimental results of supercritical carbon dioxide solubility in 8 polymers were consistent with the predicted values by the model, indicating the high prediction accuracy. The average relative deviation, squared correlation coefficient, and root mean square error were respectively 0.0036, 0.9970, and 0.0152, displaying its higher comprehensive performance. The model may also be applied in other physicochemical fields.

更新日期:2020-01-13

 

全部期刊列表>>
chemistry
物理学研究前沿热点精选期刊推荐
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug