当前位置: X-MOL 学术Nat. Astron. › 论文详情
The partitioning of the inner and outer Solar System by a structured protoplanetary disk
Nature Astronomy ( IF 10.500 ) Pub Date : 2020-01-13 , DOI: 10.1038/s41550-019-0978-6
R. Brasser; S. J. Mojzsis

Mass-independent isotopic anomalies define two cosmochemically distinct regions: the carbonaceous and non-carbonaceous meteorites1, implying that the non-carbonaceous (terrestrial) and carbonaceous (Jovian) reservoirs were kept separate during and after planet formation. The formation of Jupiter is widely invoked to explain this compositional dichotomy by acting as an effective barrier between the two reservoirs2. Jupiter’s solid kernel possibly grew to 20 Earth masses (\({M}_{\oplus }\)) in 1 Myr from the accretion of submetre-sized objects (‘pebbles’), followed by slower accretion via planetesimals. Subsequent gas envelope contraction led to Jupiter’s formation as a gas giant3. Here, we use dynamical simulations to show that the growth of Jupiter from pebble accretion is not fast enough to be responsible for the inferred separation of the terrestrial and Jovian reservoirs. We propose instead that the dichotomy was caused by a pressure maximum in the disk near Jupiter’s location, which created a ringed structure such as those detected by ALMA4. One or multiple such—potentially mobile—long-lived pressure maxima almost completely prevented pebbles from the Jovian region reaching the terrestrial zone, maintaining a compositional partition between the two regions. We thus suggest that our young Solar System’s protoplanetary disk developed at least one and probably multiple rings, which potentially triggered the formation of the giant planets.
更新日期:2020-01-14

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug