当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Internal-Field-Enhanced Charge Separation in a Single-Domain Ferroelectric PbTiO3 Photocatalyst.
Advanced Materials ( IF 27.4 ) Pub Date : 2020-01-13 , DOI: 10.1002/adma.201906513
Yong Liu 1, 2 , Sheng Ye 2 , Huichen Xie 2 , Jian Zhu 2 , Quan Shi 2 , Na Ta 2 , Ruotian Chen 2 , Yuying Gao 2 , Hongyu An 2 , Wei Nie 2 , Huanwang Jing 1 , Fengtao Fan 2 , Can Li 1, 2
Affiliation  

Ferroelectric materials with spontaneous polarization-induced internal electric fields have drawn increasing attention in solar fuel production due to the intrinsic polarized structure. However, the origination of charge separation in these materials at the nano/microlevel is ambiguous owing to the complexity of the multielectric fields. Besides, the observed charge separation ability is far from theoretical expectation. Herein, by spatially resolved surface photovoltage spectroscopy, it is clearly demonstrated that the depolarization field in single-domain ferroelectric PbTiO3 (PTO) nanoplates is the main driving force for charge separation and it can effectively drive photogenerated electrons and holes to the positive and negative polarization facets, respectively. Moreover, the charge separation ability of PTO nanoplates increases with increasing particle size along the polarization direction, due to the increasing potential difference between the opposite polarization facets. Furthermore, this driving force for charge separation directly contributes to the enhancement of the photocatalytic hydrogen evolution reaction activity in ferroelectrics. Finally, it is proved that the screening field compensates part of the depolarization field and can be diminished by adding a dielectric layer on the ferroelectric surface. These findings demonstrate the importance of increasing the depolarization field and decreasing the screening field for efficient charge separation in ferroelectric semiconductor photocatalysts.

中文翻译:

单域铁电PbTiO3光催化剂中的内场增强电荷分离。

由于固有的极化结构,具有自发极化诱导的内部电场的铁电材料已在太阳能燃料生产中引起越来越多的关注。然而,由于多电场的复杂性,这些材料在纳米/微级上电荷分离的起源是模棱两可的。此外,观察到的电荷分离能力还远未达到理论预期。在此,通过空间分辨表面光电压光谱法,可以清楚地证明,单畴铁电PbTiO3(PTO)纳米板中的去极化场是电荷分离的主要驱动力,它可以有效地将光生电子和空穴驱动为正极化和负极化方面。此外,PTO纳米板的电荷分离能力随着沿极化方向的粒径增加而增加,这是由于相对极化面之间的电势差增加所致。此外,该电荷分离的驱动力直接有助于增强铁电体中的光催化氢释放反应活性。最后,证明了屏蔽场补偿了部分去极化场,并且可以通过在铁电表面上添加介电层来减小。这些发现证明了增加去极化场并减小筛选场对于铁电半导体光催化剂中有效电荷分离的重要性。由于相反的极化面之间的电位差增加。此外,该电荷分离的驱动力直接有助于增强铁电体中的光催化氢释放反应活性。最后,证明了屏蔽场补偿了部分去极化场,并且可以通过在铁电表面上添加介电层来减小。这些发现证明了增加去极化场并减小筛选场对于铁电半导体光催化剂中有效电荷分离的重要性。由于相反的极化面之间的电位差增加。此外,该电荷分离的驱动力直接有助于增强铁电体中的光催化氢释放反应活性。最后,证明了屏蔽场补偿了部分去极化场,并且可以通过在铁电表面上添加介电层来减小。这些发现证明了增加去极化场并减小筛选场对于铁电半导体光催化剂中有效电荷分离的重要性。已经证明,屏蔽场补偿了部分去极化场,并且可以通过在铁电表面上添加介电层来减小。这些发现证明了增加去极化场并减小筛选场对于铁电半导体光催化剂中有效电荷分离的重要性。已经证明,屏蔽场补偿了部分去极化场,并且可以通过在铁电表面上添加介电层来减小。这些发现证明了增加去极化场并减小筛选场对于铁电半导体光催化剂中有效电荷分离的重要性。
更新日期:2020-02-18
down
wechat
bug