当前位置: X-MOL 学术Mech. Mach. Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Control of MIMO mechanical systems interacting with actuators through viscoelastic linkages
Mechanism and Machine Theory ( IF 4.5 ) Pub Date : 2020-05-01 , DOI: 10.1016/j.mechmachtheory.2019.103763
M.R. Homaeinezhad , S. Yaqubi , H.M. Gholyan

Abstract This paper proposes a new method for control of nonlinear multi input – multi output (MIMO) mechanical systems that incorporate viscoelastic dampers (VED) for reducing undesired vibrations of actuators. To this end, a control algorithm is proposed based on considering various characteristics of the described dynamical systems (namely mechanical dynamics, viscoelasticity and actuator dynamics) in generation of control inputs guaranteeing convergence of system response to desired reference signals. This procedure features three consecutive parts within the control loop which are conducted iteratively at each control sample. At each sample, initially necessary forces and moments exerted to mechanical system are calculated as virtual control inputs generated based on a MIMO discrete-time sliding mode control (DSMC) algorithm. As the aim of control model is obtaining a closed-loop system without resulting in notable vibrational effects, undesired chattering effects should be eliminated from inputs generated by DSMC. This objective is attained by calculation of appropriate input bounds. Next, an additional virtual input is assigned corresponding to viscoelastic strain such that virtual mechanical input from previous part of the control loop is generated. To this end, Maxwell model for viscoelastic material is considered. Finally, actual controller input is generated such that all virtual control objectives are satisfied. The effectiveness of control procedure is numerically illustrated for a 3-PRR manipulator.

中文翻译:

通过粘弹性连接控制与执行器交互的 MIMO 机械系统

摘要 本文提出了一种控制非线性多输入多输出 (MIMO) 机械系统的新方法,该系统结合了粘弹性阻尼器 (VED) 以减少致动器的不希望的振动。为此,基于在生成控制输入时所描述的动态系统(即机械动力学、粘弹性和致动器动力学)的各种特性,提出了一种控制算法,以保证系统响应收敛到所需参考信号。该程序的特点是控制循环内的三个连续部分,它们在每个控制样本上迭代进行。在每个样本中,最初施加到机械系统的必要力和力矩被计算为基于 MIMO 离散时间滑模控制 (DSMC) 算法生成的虚拟控制输入。由于控制模型的目标是获得一个闭环系统而不会产生显着的振动效应,因此应从 DSMC 生成的输入中消除不需要的颤振效应。这个目标是通过计算适当的输入边界来实现的。接下来,分配与粘弹性应变相对应的额外虚拟输入,从而生成来自控制回路前一部分的虚拟机械输入。为此,考虑了粘弹性材料的麦克斯韦模型。最后,生成实际控制器输入,从而满足所有虚拟控制目标。对于 3-PRR 机械手,控制程序的有效性以数字方式说明。应从 DSMC 生成的输入中消除不需要的颤振效应。这个目标是通过计算适当的输入边界来实现的。接下来,分配与粘弹性应变相对应的额外虚拟输入,从而生成来自控制回路前一部分的虚拟机械输入。为此,考虑了粘弹性材料的麦克斯韦模型。最后,生成实际控制器输入,从而满足所有虚拟控制目标。对于 3-PRR 机械手,控制程序的有效性以数字方式说明。应从 DSMC 生成的输入中消除不需要的颤振效应。这个目标是通过计算适当的输入边界来实现的。接下来,分配与粘弹性应变相对应的额外虚拟输入,从而生成来自控制回路前一部分的虚拟机械输入。为此,考虑了粘弹性材料的麦克斯韦模型。最后,生成实际控制器输入,从而满足所有虚拟控制目标。对于 3-PRR 机械手,控制程序的有效性以数字方式说明。考虑了粘弹性材料的麦克斯韦模型。最后,生成实际控制器输入,从而满足所有虚拟控制目标。对于 3-PRR 机械手,控制程序的有效性以数字方式说明。考虑了粘弹性材料的麦克斯韦模型。最后,生成实际控制器输入,从而满足所有虚拟控制目标。对于 3-PRR 机械手,控制程序的有效性以数字方式说明。
更新日期:2020-05-01
down
wechat
bug