当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
Graph-regularized least squares regression for multi-view subspace clustering
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-01-13 , DOI: 10.1016/j.knosys.2020.105482
Yongyong Chen; Shuqin Wang; Fangying Zheng; Yigang Cen

Many works have proven that the consistency and differences in multi-view subspace clustering make the clustering results better than the single-view clustering. Therefore, this paper studies the multi-view clustering problem, which aims to divide data points into several groups using multiple features. However, existing multi-view clustering methods fail to capturing the grouping effect and local geometrical structure of the multiple features. In order to solve these problems, this paper proposes a novel multi-view subspace clustering model called graph-regularized least squares regression (GLSR), which uses not only the least squares regression instead of the nuclear norm to generate grouping effect, but also the manifold constraint to preserve the local geometrical structure of multiple features. Specifically, the proposed GLSR method adopts the least squares regression to learn the globally consensus information shared by multiple views and the column-sparsity norm to measure the residual information. Under the alternating direction method of multipliers framework, an effective method is developed by iteratively update all variables. Numerical studies on eight real databases demonstrate the effectiveness and superior performance of the proposed GLSR over eleven state-of-the-art methods.
更新日期:2020-01-13

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug