当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
MWCNT buckypaper/polypyrrole nanocomposites for supercapasitor application
Electrochimica Acta ( IF 6.6 ) Pub Date : 2020-01-13 , DOI: 10.1016/j.electacta.2020.135700
A.A. Iurchenkova , E.O. Fedorovskaya , I.P. Asanov , V.E. Arkhipov , K.M. Popov , K.I. Baskakova , A.V. Okotrub

In this work MWNT/polypyrrole nanocomposites were synthesized and investigated as electrode materials for supercapasitor application. The MWNT were synthesized by CCVD-method and precipitated as buckypaper film (NTBP). The polypyrrole was precipitated on the NTBP surface by chemical (sample NTBP_PPy_Chem) and electrochemical (sample NTBP_PPy_Elect) polymerization. The morphology and functional composition of individual and hybrid materials were investigated by microscopic and spectroscopic methods. It was obtained that the deposition method and presence of NTBP affects the polymer morphology. It was shown that PPy chemical deposition leads to the precipitation of a large amount of an amorphous polymer on a buckypaper surface. At the same time electrochemical deposition method promotes the synthesis of uniform polymer layers. In the second case, the mass of the precipitated polymer is smaller. It was found that both deposition methods are suitable for the polypyrrole deposition and can increase the buckypaper capacity almost twice. The material long cycling showed that the NTBP_PPy_Elect sample has the greatest stability. Thus, in this study, the relationship between morphology, functional composition and electrochemical properties of materials was studied. It was shown that the synthesis method allows controlling the morphology and/or functional composition of the materials. Also it was demonstrated that the synthesized structures are promising for use as supercapacitor electrodes due to the high specific capacitance and stability.



中文翻译:

用于超级电容器的MWCNT布基纸/聚吡咯纳米复合材料

在这项工作中,合成了MWNT /聚吡咯纳米复合材料,并将其用作超级电容器应用的电极材料。MWNT通过CCVD方法合成并沉淀为布基纸膜(NTBP)。通过化学(样品NTBP_PPy_Chem)和电化学(样品NTBP_PPy_Elect)聚合将聚吡咯沉淀在NTBP表面上。通过显微镜和光谱方法研究了单个和混合材料的形态和功能组成。结果表明,沉积方法和NTBP的存在会影响聚合物的形貌。结果表明,PPy的化学沉积导致大量无定形聚合物在巴克纸表面上沉淀。同时,电化学沉积方法促进了均匀聚合物层的合成。在第二种情况下 沉淀的聚合物的质量较小。发现两种沉积方法都适合于聚吡咯沉积,并且可以使布基纸容量几乎增加两倍。材料长时间循环显示NTBP_PPy_Elect样品具有最大的稳定性。因此,在这项研究中,研究了材料的形态,功能组成和电化学性能之间的关系。结果表明,合成方法可以控制材料的形态和/或功能组成。还证明了由于高的比电容和稳定性,合成的结构有望用作超级电容器电极。发现两种沉积方法都适合于聚吡咯沉积,并且可以使布基纸容量几乎增加两倍。材料长时间循环显示NTBP_PPy_Elect样品具有最大的稳定性。因此,在这项研究中,研究了材料的形态,功能组成和电化学性能之间的关系。结果表明,合成方法可以控制材料的形态和/或功能组成。还证明了由于高的比电容和稳定性,合成的结构有望用作超级电容器电极。发现两种沉积方法都适合于聚吡咯沉积,并且可以使布基纸容量几乎增加两倍。材料长时间循环显示NTBP_PPy_Elect样品具有最大的稳定性。因此,在这项研究中,研究了材料的形态,功能组成和电化学性能之间的关系。结果表明,合成方法可以控制材料的形态和/或功能组成。还证明了由于高的比电容和稳定性,合成的结构有望用作超级电容器电极。研究了材料的功能组成和电化学性能。结果表明,合成方法可以控制材料的形态和/或功能组成。还证明了由于高的比电容和稳定性,合成的结构有望用作超级电容器电极。研究了材料的功能组成和电化学性能。结果表明,合成方法可以控制材料的形态和/或功能组成。还证明了由于高的比电容和稳定性,合成的结构有望用作超级电容器电极。

更新日期:2020-01-13
down
wechat
bug