当前位置: X-MOL 学术Int. J. Multiphase Flow › 论文详情
Comparison of X-ray and optical measurements in the near-field of an optically dense coaxial air-assisted atomizer
International Journal of Multiphase Flow ( IF 2.829 ) Pub Date : 2020-01-13 , DOI: 10.1016/j.ijmultiphaseflow.2020.103219
Julie K. Bothell; Nathanael Machicoane; Danyu Li; Timothy B. Morgan; Alberto Aliseda; Alan L. Kastengren; Theodore J. Heindel

Understanding the near-field region of a spray is integral to optimization and control efforts because this region is where liquid break-up and spray formation occurs, setting the conditions under which the spray dynamics evolve under the gas turbulence and droplet inertia. However, the high optical density of this region complicates measurements; thus, it is not yet well characterized. This paper is intended to compare four of the leading experimental techniques that are being used or developed to study the near-field region of a spray. These techniques are shadowgraphy, tube source X-ray radiography, high-speed synchrotron white-beam X-ray imaging, and synchrotron focused-beam X-ray radiography. Each of these methods is applied to a canonical spray, using the same nozzle, under identical flow conditions. Synchrotron focused-beam radiography shows that a time-averaged Gaussian liquid distribution is a valid approximation very near the nozzle, before the core has broken apart. The Gaussian behavior continues as the spray progresses further downstream, showing self-similarity. A spray angle can be defined from the linear spreading of the Gaussian intensity distribution with downstream distance. The spray angle found from shadowgraphy is validated with focused-beam testing. Additionally, a novel method of estimating the intact length of the spray from different X-ray techniques, that uses broadband illumination, is presented.
更新日期:2020-01-13

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug