当前位置: X-MOL 学术Int. Math. Res. Notices › 论文详情
Toeplitz Operators on the Symmetrized Bidisc
International Mathematics Research Notices ( IF 1.452 ) Pub Date : 2020-01-11 , DOI: 10.1093/imrn/rnz333
Bhattacharyya T, Das B, Sau H.

The symmetrized bidisc has been a rich field of holomorphic function theory and operator theory. A certain well-known reproducing kernel Hilbert space of holomorphic functions on the symmetrized bidisc resembles the Hardy space of the unit disc in several aspects. This space is known as the Hardy space of the symmetrized bidisc. We introduce the study of those operators on the Hardy space of the symmetrized bidisc that are analogous to Toeplitz operators on the Hardy space of the unit disc. More explicitly, we first study multiplication operators on a bigger space (an $L^2$-space) and then study compressions of these multiplication operators to the Hardy space of the symmetrized bidisc and prove the following major results.(1) Theorem I analyzes the Hardy space of the symmetrized bidisc, not just as a Hilbert space, but as a Hilbert module over the polynomial ring and finds three isomorphic copies of it as $\mathbb D^2$-contractive Hilbert modules.(2) Theorem II provides an algebraic, Brown and Halmos-type characterization of Toeplitz operators.(3) Theorem III gives several characterizations of an analytic Toeplitz operator.(4) Theorem IV characterizes asymptotic Toeplitz operators.(5) Theorem V is a commutant lifting theorem.(6) Theorem VI yields an algebraic characterization of dual Toeplitz operators. Every section from Section 2 to Section 7 contains a theorem each, the main result of that section.
更新日期:2020-01-13

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
上海纽约大学William Glover
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug