当前位置: X-MOL 学术Int. Math. Res. Notices › 论文详情
Toeplitz Operators on the Symmetrized Bidisc
International Mathematics Research Notices ( IF 1.291 ) Pub Date : 2020-01-11 , DOI: 10.1093/imrn/rnz333
Bhattacharyya T, Das B, Sau H.

The symmetrized bidisc has been a rich field of holomorphic function theory and operator theory. A certain well-known reproducing kernel Hilbert space of holomorphic functions on the symmetrized bidisc resembles the Hardy space of the unit disc in several aspects. This space is known as the Hardy space of the symmetrized bidisc. We introduce the study of those operators on the Hardy space of the symmetrized bidisc that are analogous to Toeplitz operators on the Hardy space of the unit disc. More explicitly, we first study multiplication operators on a bigger space (an $L^2$-space) and then study compressions of these multiplication operators to the Hardy space of the symmetrized bidisc and prove the following major results.(1) Theorem I analyzes the Hardy space of the symmetrized bidisc, not just as a Hilbert space, but as a Hilbert module over the polynomial ring and finds three isomorphic copies of it as $\mathbb D^2$-contractive Hilbert modules.(2) Theorem II provides an algebraic, Brown and Halmos-type characterization of Toeplitz operators.(3) Theorem III gives several characterizations of an analytic Toeplitz operator.(4) Theorem IV characterizes asymptotic Toeplitz operators.(5) Theorem V is a commutant lifting theorem.(6) Theorem VI yields an algebraic characterization of dual Toeplitz operators. Every section from Section 2 to Section 7 contains a theorem each, the main result of that section.
更新日期:2020-01-13

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
李刚
北大
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
张健
陈芬儿
厦门大学
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug