当前位置: X-MOL 学术Int. Math. Res. Notices › 论文详情
Almost Sure Local Well-Posedness for a Derivative Nonlinear Wave Equation
International Mathematics Research Notices ( IF 1.291 ) Pub Date : 2020-01-11 , DOI: 10.1093/imrn/rnz385
Bringmann B.

We study the derivative nonlinear wave equation $- \partial _{tt} u + \Delta u = |\nabla u|^2$ on $\mathbb{R}^{1 +3}$. The deterministic theory is determined by the Lorentz-critical regularity $s_L = 2$, and both local well-posedness above $s_L$ as well as ill-posedness below $s_L$ are known. In this paper, we show the local existence of solutions for randomized initial data at the super-critical regularities $s\geqslant 1.984$. In comparison to the previous literature in random dispersive equations, the main difficulty is the absence of a (probabilistic) nonlinear smoothing effect. To overcome this, we introduce an adaptive and iterative decomposition of approximate solutions into rough and smooth components. In addition, our argument relies on refined Strichartz estimates, a paraproduct decomposition, and the truncation method of de Bouard and Debussche.
更新日期:2020-01-13

 

全部期刊列表>>
施普林格自然
最近合集,配们化学
欢迎访问IOP中国网站
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
复旦大学
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
刘冬生
试剂库存
down
wechat
bug