当前位置: X-MOL 学术Colloids Surf. B Biointerfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanical and microstructural insights of Vibrio cholerae and Escherichia coli dual-species biofilm at the air-liquid interface.
Colloids and Surfaces B: Biointerfaces ( IF 5.4 ) Pub Date : 2020-01-11 , DOI: 10.1016/j.colsurfb.2020.110786
Clémence Abriat 1 , Kyle Enriquez 2 , Nick Virgilio 3 , Lynette Cegelski 2 , Gerald G Fuller 4 , France Daigle 5 , Marie-Claude Heuzey 3
Affiliation  

Biofilm is the dominant microbial form found in nature, in which bacterial species are embedded in a self-produced extracellular matrix (ECM). These complex microbial communities are responsible for several infections when they involve multispecies pathogenic bacteria. In previous studies, interfacial rheology proved to be a unique quantitative technique to follow in real-time the biofilm formation at the air-liquid interface. In this work, we studied a model system composed of two bacteria pathogenic capable of forming a pellicle biofilm, V. cholerae and E. coli. We used an integrated approach by combining a real-time quantitative analysis of the biofilm rheological properties, with the investigation of major matrix components and the pellicle microstructure. The results highlight the competition for the interface between the two species, driven by the biofilm formation growth rate. In the dual-species biofilm, the viscoelastic properties were dominated by V. cholera, which formed a mature biofilm 18 h faster than E. coli. The microstructure of the dual-species biofilm revealed a similar morphology to V. cholerae alone when both bacteria were initially added at the same amount. The analysis of some major ECM components showed that E. coli was not able to produce curli in the presence of V. cholerae, unless enough time was given for E. coli to colonize the air-liquid interface first. E. coli secreted phosphoethanolamine (pEtN) cellulose in the dual-species biofilm, but did not form a filamentous structure. Our pathogenic model system demonstrated the importance of the biofilm growth rate for multispecies biofilm composition at the air-liquid interface.

中文翻译:

气液界面处霍乱弧菌和大肠杆菌双物种生物膜的机械和微观结构见解。

生物膜是自然界中占主导地位的微生物形式,其中细菌物种嵌入自生的细胞外基质(ECM)中。这些复杂的微生物群落涉及多种物种的致病细菌,因此会导致多种感染。在以前的研究中,界面流变学被证明是一种独特的定量技术,可以实时跟踪气液界面处生物膜的形成。在这项工作中,我们研究了由两种能够形成表膜生物膜的细菌致病菌(霍乱弧菌和大肠杆菌)组成的模型系统。我们通过结合对生物膜流变特性的实时定量分析以及主要基质成分和防护膜微结构的研究,使用了一种集成方法。结果突显了两个物种之间的界面竞争,由生物膜形成的增长率驱动。在双物种生物膜中,粘弹性由霍乱弧菌控制,霍乱弧菌形成成熟的生物膜比大肠杆菌快18小时。当最初以相同量添加两种细菌时,双物种生物膜的微观结构显示出与单独的霍乱弧菌相似的形态。对一些主要ECM成分的分析表明,在霍乱弧菌的存在下,大肠杆菌无法产生卷曲,除非给予大肠杆菌足够的时间使其首先在气液界面定殖。大肠杆菌在双物种生物膜中分泌了磷酸乙醇胺(pEtN)纤维素,但未形成丝状结构。我们的致病模型系统证明了生物膜生长速率对于气液界面上多种生物膜组成的重要性。
更新日期:2020-01-13
down
wechat
bug