当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Carbon–based nanomaterials and ZnO ternary compound layers grown by laser technique for environmental and energy storage applications
Applied Surface Science ( IF 5.155 ) Pub Date : 2020-01-12 , DOI: 10.1016/j.apsusc.2020.145359
R. Ivan; C. Popescu; A. Pérez del Pino; C. Logofatu; E György

Carbon nanotube – highly reduced graphene oxide – transition metal oxide (ZnO) nanohybrid layers were synthesized using a one-step laser technique. Commercial multiwall carbon nanotubes (MWCNTs), graphene oxide (GO) platelets and ZnO nanoparticles were used as starting materials. We discuss the influence of carbon/metal oxide ratio on the physico-chemical properties of the nanohybrid layers, geometrical characteristics, shape and dimensions of constituent nanoentities, chemical composition and chemical bonding states, optical properties, UV-visible absorption, band gap values, as well as charge transfer properties. In the followings the relation between these properties and functional characteristics, removal of water contaminants, antibiotic molecules, and charge storage performances of the ternary, MWCNTs/reduced GO/ZnO layers are presented, identifying the optimum relative concentrations of the constituting nanomaterials. The high photocatalytic efficiencies both under UV and visible light irradiations, even after several consecutive degradation cycles, were attributed to effective separation of photogenerated charge carriers by carbon nanomaterials as well as formation of oxygen deficient ZnOx-1 nanocrystals. The enhanced charge storage capacity of ternary nanohybrid electrodes is based on combined electrochemical double layer capacitance and pseudocapacitance implying redox reactions on the surface and subsurface of the layers in contact with the electrolyte. Both functional properties are strongly influenced by the relative concentrations of the nanomaterials constituting the ternary layers.
更新日期:2020-01-13

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug