当前位置: X-MOL 学术Appl. Surf. Sci. › 论文详情
Carbon–based nanomaterials and ZnO ternary compound layers grown by laser technique for environmental and energy storage applications
Applied Surface Science ( IF 6.182 ) Pub Date : 2020-01-12 , DOI: 10.1016/j.apsusc.2020.145359
R. Ivan; C. Popescu; A. Pérez del Pino; C. Logofatu; E György

Carbon nanotube – highly reduced graphene oxide – transition metal oxide (ZnO) nanohybrid layers were synthesized using a one-step laser technique. Commercial multiwall carbon nanotubes (MWCNTs), graphene oxide (GO) platelets and ZnO nanoparticles were used as starting materials. We discuss the influence of carbon/metal oxide ratio on the physico-chemical properties of the nanohybrid layers, geometrical characteristics, shape and dimensions of constituent nanoentities, chemical composition and chemical bonding states, optical properties, UV-visible absorption, band gap values, as well as charge transfer properties. In the followings the relation between these properties and functional characteristics, removal of water contaminants, antibiotic molecules, and charge storage performances of the ternary, MWCNTs/reduced GO/ZnO layers are presented, identifying the optimum relative concentrations of the constituting nanomaterials. The high photocatalytic efficiencies both under UV and visible light irradiations, even after several consecutive degradation cycles, were attributed to effective separation of photogenerated charge carriers by carbon nanomaterials as well as formation of oxygen deficient ZnOx-1 nanocrystals. The enhanced charge storage capacity of ternary nanohybrid electrodes is based on combined electrochemical double layer capacitance and pseudocapacitance implying redox reactions on the surface and subsurface of the layers in contact with the electrolyte. Both functional properties are strongly influenced by the relative concentrations of the nanomaterials constituting the ternary layers.

更新日期:2020-01-13

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
自然职位线上招聘会
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
彭小水
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
赵延川
李霄羽
廖矿标
朱守非
试剂库存
down
wechat
bug