当前位置: X-MOL 学术Nucleic Acids Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
ssDNA diffuses along replication protein A via a reptation mechanism.
Nucleic Acids Research ( IF 14.9 ) Pub Date : 2020-01-10 , DOI: 10.1093/nar/gkz1202
Garima Mishra 1, 2 , Lavi S Bigman 1 , Yaakov Levy 1
Affiliation  

Replication protein A (RPA) plays a critical role in all eukaryotic DNA processing involving single-stranded DNA (ssDNA). Contrary to the notion that RPA provides solely inert protection to transiently formed ssDNA, the RPA-ssDNA complex acts as a dynamic DNA processing unit. Here, we studied the diffusion of RPA along 60 nt ssDNA using a coarse-grained model in which the ssDNA-RPA interface was modeled by both aromatic and electrostatic interactions. Our study provides direct evidence of bulge formation during the diffusion of ssDNA along RPA. Bulges can form at a few sites along the interface and store 1-7 nt of ssDNA whose release, upon bulge dissolution, leads to propagation of ssDNA diffusion. These findings thus support the reptation mechanism, which involves bulge formation linked to the aromatic interactions, whose short range nature reduces cooperativity in ssDNA diffusion. Greater cooperativity and a larger diffusion coefficient for ssDNA diffusion along RPA are observed for RPA variants with weaker aromatic interactions and for interfaces homogenously stabilized by electrostatic interactions. ssDNA propagation in the latter instance is characterized by lower probabilities of bulge formation; thus, it may fit the sliding-without-bulge model better than the reptation model. Thus, the reptation mechanism allows ssDNA mobility despite the extensive and high affinity interface of RPA with ssDNA. The short-range aromatic interactions support bulge formation while the long-range electrostatic interactions support the release of the stored excess ssDNA in the bulge and thus the overall diffusion.

中文翻译:

ssDNA通过复制机制沿着复制蛋白A扩散。

复制蛋白A(RPA)在涉及单链DNA(ssDNA)的所有真核DNA加工中都起着至关重要的作用。与RPA仅对瞬态形成的ssDNA提供惰性保护的概念相反,RPA-ssDNA复合体充当动态DNA处理单元。在这里,我们使用粗粒模型研究了RPA沿60 nt ssDNA的扩散,其中通过芳香族和静电相互作用对ssDNA-RPA界面进行了建模。我们的研究提供了ssDNA沿RPA扩散过程中凸起形成的直接证据。隆起可在沿界面的几个部位形成,并存储1-7 nt的ssDNA,其在隆起溶解时释放,导致ssDNA扩散传播。因此,这些发现支持了引诱机制,该机制涉及与芳香族相互作用相关的凸起形成,其短距离性质降低了ssDNA扩散的协同性。对于芳香族相互作用较弱的RPA变体以及通过静电相互作用均质稳定的界面,观察到更大的协同性和更大的ssDNA沿RPA扩散的扩散系数。在后一种情况下,ssDNA繁殖的特征是凸起形成的可能性较低;因此,与展开模型相比,它可能更适合无​​凸起滑动模型。因此,尽管RPA与ssDNA具有广泛且高亲和力的界面,但其复制机制仍允许ssDNA迁移。短程芳族相互作用支持凸起的形成,而长程静电相互作用则支持凸起中所存储的过量ssDNA的释放,从而促进整体扩散。对于芳香族相互作用较弱的RPA变体以及通过静电相互作用均质稳定的界面,观察到更大的协同性和更大的ssDNA沿RPA扩散的扩散系数。在后一种情况下,ssDNA繁殖的特征是凸起形成的可能性较低;因此,与展开模型相比,它可能更适合无​​凸起滑动模型。因此,尽管RPA与ssDNA具有广泛且高亲和力的界面,但其复制机制仍允许ssDNA迁移。短程芳族相互作用支持凸起的形成,而长程静电相互作用则支持凸起中所存储的过量ssDNA的释放,从而促进整体扩散。对于芳香族相互作用较弱的RPA变体以及通过静电相互作用均质稳定的界面,观察到更大的协同性和更大的ssDNA沿RPA扩散的扩散系数。在后一种情况下,ssDNA繁殖的特征是凸起形成的可能性较低;因此,与展开模型相比,它可能更适合无​​凸起滑动模型。因此,尽管RPA与ssDNA具有广泛且高亲和力的界面,但其复制机制仍允许ssDNA迁移。短程芳族相互作用支持凸起的形成,而长程静电相互作用则支持凸起中所存储的过量ssDNA的释放,从而促进整体扩散。
更新日期:2020-01-10
down
wechat
bug