当前位置: X-MOL 学术Spectrochim. Acta. A Mol. Biomol. Spectrosc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Real-time monitoring of multicomponent reactive dye adsorption on cotton fabrics by Raman spectroscopy.
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy ( IF 4.3 ) Pub Date : 2020-01-10 , DOI: 10.1016/j.saa.2020.118051
Yamin Dai 1 , Binfan Yang 1 , Yongsheng Ding 1 , Hong Xu 2 , Bijia Wang 1 , Linping Zhang 1 , Zhize Chen 1 , Xiaofeng Sui 1 , Xueling Feng 3 , Yi Zhong 1 , Zhiping Mao 4
Affiliation  

Accurate real-time determination of each dye in combination dyeing is critical to the control of dyeing process, which plays an important role in upgrading the dyeing techniques of textile. In this work, Raman spectroscopy was applied to dyeing baths containing multiple dye species of varying structures to quantitatively monitor the dyeing process of each individual dye. Quantitative models were successfully established by partial least squares (PLS) for all combinations of the nine commonly used reactive dyes studied. The correlation coefficients were greater than 0.99, the root mean squared errors of calibration (RMSEC) were less than 0.2650 and the root mean squared errors of prediction (RMSEP) were less than 0.1340, even for the three-component mixture of Reactive Red 239 (RR239), Reactive Yellow 176 (RY176) and Reactive Blue 194 (RB194), which are similar in structures. The model was shown to be valid in the presence of added electrolytes (sodium sulfates). Real-time adsorption monitoring based on the model revealed that the dyes interacted with one another and competed for active sites. The adsorption kinetics obtained by Raman analysis shed light on dye compatibility and could be used to guide the design of dyeing recipe and dyeing process for optimum color reproduction. In addition, in situ monitoring by Raman spectroscopy maybe integrated with real-time on line control of dyeing parameters for fully automated production of dyed fabrics.

中文翻译:

通过拉曼光谱实时监测棉织物上多组分活性染料的吸附。

组合染色中每种染料的准确实时测定对于染色过程的控制至关重要,这对提升纺织品的染色技术起着重要的作用。在这项工作中,拉曼光谱法被应用于包含多种具有不同结构的染料种类的染浴中,以定量地监控每种染料的染色过程。通过偏最小二乘(PLS)成功建立了定量模型,用于研究的9种常用活性染料的所有组合。甚至对于活性红239的三组分混合物,相关系数都大于0.99,校准的均方根误差(RMSEC)小于0.2650,预测的均方根误差(RMSEP)小于0.1340 RR239),活性黄176(RY176)和活性蓝194(RB194),结构相似。该模型显示在添加电解质(硫酸钠)的情况下是有效的。基于该模型的实时吸附监测表明,染料彼此相互作用并竞争活性位点。通过拉曼分析获得的吸附动力学揭示了染料的相容性,可用于指导染色配方和染色工艺的设计,以实现最佳的色彩再现。另外,通过拉曼光谱法的原位监测可以与染色参数的实时在线控制集成,以实现染色织物的全自动生产。基于该模型的实时吸附监测表明,染料彼此相互作用并竞争活性位点。通过拉曼分析获得的吸附动力学揭示了染料的相容性,可用于指导染色配方和染色工艺的设计,以实现最佳的色彩再现。另外,通过拉曼光谱法的原位监测可以与染色参数的实时在线控制集成,以实现染色织物的全自动生产。基于该模型的实时吸附监测表明,染料彼此相互作用并竞争活性位点。通过拉曼分析获得的吸附动力学揭示了染料的相容性,可用于指导染色配方和染色工艺的设计,以实现最佳的色彩再现。另外,通过拉曼光谱法的原位监测可以与染色参数的实时在线控制集成,以实现染色织物的全自动生产。
更新日期:2020-01-11
down
wechat
bug