当前位置: X-MOL 学术IEEE Trans. Signal Process. › 论文详情
Multi-Class Random Matrix Filtering for Adaptive Learning
IEEE Transactions on Signal Processing ( IF 5.028 ) Pub Date : 2019-11-28 , DOI: 10.1109/tsp.2019.2956688
Paolo Braca; Augusto Aubry; Leonardo Maria Millefiori; Antonio De Maio; Stefano Marano

Covariance matrix estimation is a crucial task in adaptive signal processing applied to several surveillance systems, including radar and sonar. In this paper we propose a dynamic learning strategy to track both the covariance matrix of data and its structure (class). We assume that, given the class, the posterior distribution of the covariance is described through a mixture of inverse Wishart distributions, while the class evolves according to a Markov chain. Hence, we devise a novel and general filtering strategy, called multi-class inverse Wishart mixture filter, able to capitalize on previous observations so as to accurately track and estimate the covariance. Some case studies are provided to highlight the effectiveness of the proposed technique, which is shown to outperform alternative methods in terms of both covariance estimation accuracy and probability of correct model selection. Specifically, the proposed filter is compared with class-clairvoyant covariance estimators, e.g., the maximum likelihood and the knowledge-based recursive least square filter, and with the model order selection method based on the Bayesian information criterion.
更新日期:2020-04-22

 

全部期刊列表>>
物理学研究前沿热点精选期刊推荐
chemistry
《自然》编辑与您分享如何成为优质审稿人-信息流
欢迎报名注册2020量子在线大会
化学领域亟待解决的问题
材料学研究精选新
GIANT
自然职场线上招聘会
ACS ES&T Engineering
ACS ES&T Water
ACS Publications填问卷
屿渡论文,编辑服务
阿拉丁试剂right
南昌大学
王辉
南方科技大学
刘天飞
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
X-MOL
苏州大学
廖矿标
深圳湾
试剂库存
down
wechat
bug