当前位置: X-MOL 学术Bioelectrochemistry › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Direct electron transfer-type bioelectrocatalysis of FAD-dependent glucose dehydrogenase using porous gold electrodes and enzymatically implanted platinum nanoclusters.
Bioelectrochemistry ( IF 4.8 ) Pub Date : 2020-01-11 , DOI: 10.1016/j.bioelechem.2020.107457
Taiki Adachi 1 , Takahiro Fujii 2 , Michinari Honda 2 , Yuki Kitazumi 1 , Osamu Shirai 1 , Kenji Kano 1
Affiliation  

The direct electron transfer (DET)-type bioelectrocatalysis of flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase (GDH) from Aspergillus terreus (AtGDH) was carried out using porous gold (Au) electrodes and enzymatically implanted platinum nanoclusters (PtNCs). The porous Au electrodes were prepared by anodization of planar Au electrodes in a phosphate buffer containing glucose as a reductant. Moreover, PtNCs were generated into AtGDH by an enzymatic reduction of hexachloroplatinate (IV) ion. The modification was confirmed by native polyacrylamide gel electrophoresis and sodium dodecyl sulfate polyacrylamide gel electrophoresis analyses. The AtGDH-adsorbed porous Au electrode showed a DET-type bioelectrocatalytic wave both in the presence and absence of PtNCs; however, the current density with PtNCs (~1 mA cm-2 at 0 V vs. Ag|AgCl|sat. KCl) was considerably higher than that without PtNCs. The kinetic and thermodynamic analysis of the steady-state catalytic wave indicated that inner PtNCs shortened the distance between the catalytic center of AtGDH (=FAD) and the conductive material, and improved the heterogeneous electron transfer kinetics between them.

中文翻译:

FAD依赖性葡萄糖脱氢酶的直接电子转移型生物电催化,使用多孔金电极和酶植入的铂纳米簇。

使用多孔金(Au)电极和酶植入铂纳米簇(PtNCs)进行了来自土壤曲霉(AtGDH)的黄素腺嘌呤二核苷酸(FAD)依赖性葡萄糖脱氢酶(GDH)的直接电子转移(DET)型生物电催化。通过在含有葡萄糖作为还原剂的磷酸盐缓冲液中对平面Au电极进行阳极氧化来制备多孔Au电极。此外,通过酶促还原六氯铂酸根离子(IV)离子将PtNC生成到AtGDH中。通过天然聚丙烯酰胺凝胶电泳和十二烷基硫酸钠聚丙烯酰胺凝胶电泳分析证实了该修饰。AtGDH吸附的多孔Au电极在存在和不存在PtNC的情况下均显示DET型生物电催化波。但是,PtNC的电流密度(0 V时约为1 mA cm-2 vs. Ag | AgCl |饱和。KCl)明显高于没有PtNC的情况。稳态催化波的动力学和热力学分析表明,内部PtNC缩短了AtGDH(= FAD)催化中心与导电材料之间的距离,并改善了它们之间的异质电子传递动力学。
更新日期:2020-01-11
down
wechat
bug