当前位置: X-MOL 学术Int. J. Multiphase Flow › 论文详情
Large eddy simulation of a partially pre-vaporized ethanol reacting spray using the multiphase DTF/flamelet model
International Journal of Multiphase Flow ( IF 2.829 ) Pub Date : 2020-01-10 , DOI: 10.1016/j.ijmultiphaseflow.2020.103216
Yong Hu; Reo Kai; Ryoichi Kurose; Eva Gutheil; Hernan Olguin

Spray reactive flow finds application in various technical devices, and due to the complex nature, their optimization is very challenging, requiring proper modeling of turbulence/chemistry interactions as well as of the contribution from spray evaporation. This work presents a study of sub-grid scale combustion models, where relevant assumptions on multiphase coupling and their effects are analyzed in detail. For this purpose, two different flamelet approaches, i.e. progress variable spray flamelet and multi-regime gas flamelet are examined in an implementation coupled with the dynamic thickened flame model, along with which the impact of inlet inhomogeneities condition and droplet evaporation taking into account internal temperature gradient is also investigated. The numerical evaluation is carried out in large eddy simulations of a benchmark ethanol spray flame with partial pre-vaporization, where an Eulerian-Lagrangian numerical framework is adopted. The analysis demonstrated that the flame dynamics under consideration is governed by a close coupling between spray evaporation, turbulent dispersion and unsteady flame propagation at upstream shear layers. Results show that the spray flamelets built from counterflow partially-premixed spray flames achieved a better agreement with experiments, capturing the flame structure in terms of gas-phase temperature, OH mass fraction as well as spray statistics.
更新日期:2020-01-11

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug