当前位置: X-MOL 学术Mater. Des. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Computational and experimental characterization of 3D-printed PCL structures toward the design of soft biological tissue scaffolds
Materials & Design ( IF 7.6 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.matdes.2020.108488
Hailong Liu , Astrid Ahlinder , Mohammed A. Yassin , Anna Finne-Wistrand , T. Christian Gasser

Abstract Degradable porous polymeric structures are attractive candidates for biological tissue scaffolds, and adequate mechanical, transport, chemical and biological properties determine their functionality. Aside from the properties of polymer-based materials, the scaffold's meso-structure controls its elasticity at the organ length-scale. This study investigated the effect of the meso-structure on scaffolds' mechanical and transport properties using finite element analysis (FEA) and computational fluid dynamics (CFD). A number of poly (e-caprolactone) (PCL) - based scaffolds were 3D printed, analyzed by microcomputed tomography (micro-CT) and mechanically tested. We found that the gradient (G) and gradient and staggered (GS) meso-structure designs led to a higher scaffold permeability, a more homogeneous flow inside the scaffold, and a lower wall shear stress (WSS) in comparison with the basic (B) meso-structure design. The GS design resulted in scaffold stiffness as low as 1.07/0.97 MPa under compression/tension, figures that are comparative with several soft tissues. Image processing of micro-CT data demonstrated that the imposed meso-structures could have been adequately realized through 3D printing, and experimental testing validated FEA analysis. Our results suggest that the properties of 3D-printed PCL-based scaffolds can be tuned via meso-structures toward soft tissue engineering applications. The biological function of designed scaffolds should be further explored in-situ studies.

中文翻译:

用于软生物组织支架设计的 3D 打印 PCL 结构的计算和实验表征

摘要 可降解的多孔聚合物结构是生物组织支架的有吸引力的候选者,足够的机械、运输、化学和生物特性决定了它们的功能。除了聚合物基材料的特性外,支架的细观结构控制其在器官长度尺度上的弹性。本研究使用有限元分析 (FEA) 和计算流体动力学 (CFD) 研究了细观结构对支架机械和传输特性的影响。许多基于聚(ε-己内酯)(PCL)的支架被 3D 打印,通过显微计算机断层扫描(micro-CT)进行分析并进行机械测试。我们发现梯度 (G) 和梯度和交错 (GS) 细观结构设计导致更高的支架渗透性,支架内更均匀的流动,与基本 (B) 细观结构设计相比,壁面剪应力 (WSS) 更低。GS 设计导致支架在压缩/拉伸下的刚度低至 1.07/0.97 MPa,与几种软组织相比的数字。微 CT 数据的图像处理表明,施加的细观结构可以通过 3D 打印充分实现,并且实验测试验证了 FEA 分析。我们的结果表明,3D 打印的基于 PCL 的支架的特性可以通过细观结构调整到软组织工程应用。设计支架的生物学功能应进一步探索原位研究。与几种软组织进行比较的数字。微 CT 数据的图像处理表明,施加的细观结构可以通过 3D 打印充分实现,并且实验测试验证了 FEA 分析。我们的结果表明,3D 打印的基于 PCL 的支架的特性可以通过细观结构调整到软组织工程应用。设计支架的生物学功能应进一步探索原位研究。与几种软组织进行比较的数字。微 CT 数据的图像处理表明,施加的细观结构可以通过 3D 打印充分实现,并且实验测试验证了 FEA 分析。我们的结果表明,3D 打印的基于 PCL 的支架的特性可以通过细观结构调整到软组织工程应用。设计支架的生物学功能应进一步探索原位研究。我们的结果表明,3D 打印的基于 PCL 的支架的特性可以通过细观结构调整到软组织工程应用。设计支架的生物学功能应进一步探索原位研究。我们的结果表明,3D 打印的基于 PCL 的支架的特性可以通过细观结构调整到软组织工程应用。设计支架的生物学功能应进一步探索原位研究。
更新日期:2020-03-01
down
wechat
bug