当前位置: X-MOL 学术J. Comput. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accurate, grid-robust and versatile combined-field discretization for the electromagnetic scattering analysis of perfectly conducting targets
Journal of Computational Physics ( IF 3.8 ) Pub Date : 2020-01-10 , DOI: 10.1016/j.jcp.2020.109236
Eduard Ubeda , Ivan Sekulic , Juan M. Rius , Alex Heldring

Recent implementations of the Electric-Field Integral Equation (EFIE) for the electromagnetic scattering analysis of perfectly conducting targets rely on the electric current expansion with the monopolar-RWG basis functions, discontinuous across mesh edges, and the field testing over volumetric subdomains attached to the surface boundary triangulation. As compared to the standard RWG-based EFIE-approaches, normally continuous across edges, these schemes exhibit enhanced versatility, allowing the analysis of geometrically non-conformal meshes, and improved accuracy, especially for subwavelength sharp-edged conductors. In this paper, we present a monopolar-RWG discretization by the Method of Moments (MoM) of the Combined-Field Integral Equation (CFIE) resulting from the addition of a volumetrically tested discretization of the EFIE and the Galerkin tested MFIE-implementation. We show for sharp-edged conductors the degree of improved accuracy in the computed RCS and the convergence properties in the iterative search of the solution. More importantly, as we show in the paper, these implementations become in practice advantageous because of their robustness to flaws in the grid generation or their agility in handling complex meshes arising from the interconnection of independently meshed domains. The hybrid RWG/monopolar-RWG discretization of the CFIE defines the RWG discretization over geometrically conformal and smoothly varying mesh regions and inserts the monopolar-RWG expansion strictly at sharp edges, for improved accuracy purposes, or over boundary lines between partitioning mesh domains, for the sake of enhanced versatility. These hybrid schemes offer similar accuracy as their fully monopolar-RWG counterparts but with fewer unknowns and allow naturally non-conformal mesh transitions without inserting additional inter-domain continuity conditions or new artificial currents.



中文翻译:

精确,稳健和通用的组合场离散技术,用于完美传导目标的电磁散射分析

用于完美传导目标电磁散射分析的电场积分方程(EFIE)的最新实现依赖于具有单极RWG基函数的电流扩展,跨网格边缘的不连续性以及连接到体积子域的体积子域的现场测试表面边界三角剖分。与标准的基于RWG的EFIE方法(通常跨边缘连续)相比,这些方案显示出更高的通用性,可以分析几何非共形的网格,并提高了准确性,尤其是对于亚波长锐边导体。在本文中,我们通过组合场积分方程(CFIE)的矩量法(MoM)提出了单极RWG离散化方法,该方法是通过对EFIE进行体积测试的离散化和通过Galerkin测试的MFIE实现实现的。我们为锋利的导体显示了在计算出的RCS中提高的准确性的程度以及在迭代求解中的收敛性。更重要的是,正如我们在本文中所展示的,这些实现在实践中变得有利,因为它们对网格生成中的缺陷具有鲁棒性,或者它们在处理由独立网格化域的互连引起的复杂网格中的敏捷性。CFIE的混合RWG /单极-RWG离散化定义了在几何共形且平滑变化的网格区域上的RWG离散化,并且为了提高精度目的,将单极-RWG扩展严格插入尖锐的边缘,或者在划分网格域之间的边界线上插入,为了增强多功能性。这些混合方案提供的精确度与完全单极RWG对应物相似,但未知数更少,并允许自然地不保形的网格过渡,而无需插入其他域间连续性条件或新的人工电流。

更新日期:2020-01-11
down
wechat
bug