当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Observation of hydrogen trapping at dislocations, grain boundaries, and precipitates
Science ( IF 44.7 ) Pub Date : 2020-01-09 , DOI: 10.1126/science.aaz0122
Yi-Sheng Chen 1, 2 , Hongzhou Lu 3 , Jiangtao Liang 4 , Alexander Rosenthal 5 , Hongwei Liu 6 , Glenn Sneddon 1, 2 , Ingrid McCarroll 1 , Zhengzhi Zhao 4 , Wei Li 7 , Aimin Guo 3 , Julie M Cairney 1, 2
Affiliation  

An anti-embrittlement roadmap Hydrogen is important for energy applications such as fuel cells but tends to diffuse into materials and make them more susceptible to fracture. Chen et al. tackled the challenge of identifying the exact location of hydrogen atoms in two common steels. The light weight and high mobility of hydrogen creates serious problems with conventional techniques. The authors used cryo-transfer atom probe tomography to show that hydrogen is pinned to various interfaces in the steels. This direct look into hydrogen trapping should help with the development of materials that are more resistant to hydrogen embrittlement. Science, this issue p. 171 Cryogenic atom probe observations map hydrogen to a variety of interfaces, providing insight into hydrogen embrittlement. Hydrogen embrittlement of high-strength steel is an obstacle for using these steels in sustainable energy production. Hydrogen embrittlement involves hydrogen-defect interactions at multiple-length scales. However, the challenge of measuring the precise location of hydrogen atoms limits our understanding. Thermal desorption spectroscopy can identify hydrogen retention or trapping, but data cannot be easily linked to the relative contributions of different microstructural features. We used cryo-transfer atom probe tomography to observe hydrogen at specific microstructural features in steels. Direct observation of hydrogen at carbon-rich dislocations and grain boundaries provides validation for embrittlement models. Hydrogen observed at an incoherent interface between niobium carbides and the surrounding steel provides direct evidence that these incoherent boundaries can act as trapping sites. This information is vital for designing embrittlement-resistant steels.

中文翻译:

在位错、晶界和析出物处捕获氢的观察

抗脆化路线图 氢对于燃料电池等能源应用很重要,但往往会扩散到材料中并使它们更容易断裂。陈等人。解决了确定两种常见钢中氢原子确切位置的挑战。氢的轻质和高流动性给传统技术带来了严重的问题。作者使用低温转移原子探针断层扫描来显示氢被固定在钢的各个界面上。这种对氢捕获的直接研究应该有助于开发更耐氢脆的材料。科学,这个问题 p。171 低温原子探针观测将氢映射到各种界面,从而深入了解氢脆。高强度钢的氢脆是将这些钢用于可持续能源生产的障碍。氢脆涉及多长度尺度的氢缺陷相互作用。然而,测量氢原子精确位置的挑战限制了我们的理解。热解吸光谱可以识别氢保留或捕获,但数据不能容易地与不同微观结构特征的相对贡献联系起来。我们使用低温转移原子探针断层扫描来观察钢中特定微观结构特征处的氢。在富碳位错和晶界处直接观察氢为脆化模型提供了验证。在碳化铌和周围钢之间的非相干界面处观察到的氢提供了直接证据,表明这些非相干边界可以作为俘获点。这些信息对于设计抗脆化钢至关重要。
更新日期:2020-01-09
down
wechat
bug