当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains
Science ( IF 44.7 ) Pub Date : 2020-01-09 , DOI: 10.1126/science.aay2354
Jayadev Vijayan 1, 2 , Pimonpan Sompet 1, 2 , Guillaume Salomon 1, 2 , Joannis Koepsell 1, 2 , Sarah Hirthe 1, 2 , Annabelle Bohrdt 2, 3 , Fabian Grusdt 2, 3, 4 , Immanuel Bloch 1, 2, 5 , Christian Gross 1, 2
Affiliation  

Spin and charge go their separate ways Strongly interacting chains of fermions are predicted to exhibit two types of collective excitations: spinons, which carry only spin, and holons, which carry only charge. These excitations move at different velocities. Signatures of this so-called spin-charge separation have been observed in solid-state systems, but obtaining direct dynamical evidence is tricky. With this goal in mind, Vijayan et al. perturbed a chain of ultracold interacting fermions housed in a one-dimensional optical lattice by removing one of the atoms. This gave rise to two independent excitations, which the researchers identified as spinons and holons using a quantum gas microscope. Science, this issue p. 186 Quantum gas microscopy is used to track spinons and holons in a 1D optical lattice filled with interacting 6Li atoms. Elementary particles carry several quantum numbers, such as charge and spin. However, in an ensemble of strongly interacting particles, the emerging degrees of freedom can fundamentally differ from those of the individual constituents. For example, one-dimensional systems are described by independent quasiparticles carrying either spin (spinon) or charge (holon). Here, we report on the dynamical deconfinement of spin and charge excitations in real space after the removal of a particle in Fermi-Hubbard chains of ultracold atoms. Using space- and time-resolved quantum gas microscopy, we tracked the evolution of the excitations through their signatures in spin and charge correlations. By evaluating multipoint correlators, we quantified the spatial separation of the excitations in the context of fractionalization into single spinons and holons at finite temperatures.

中文翻译:

费米子哈伯德链中自旋电荷解禁的时间分辨观察

自旋和电荷各行其是 预计强相互作用的费米子链会表现出两种类型的集体激发:仅携带自旋的自旋子和仅携带电荷的全子。这些激励以不同的速度移动。在固态系统中已经观察到这种所谓的自旋电荷分离的特征,但获得直接的动力学证据很棘手。考虑到这一目标,Vijayan 等人。通过去除一个原子,扰乱了位于一维光学晶格中的超冷相互作用费米子链。这产生了两个独立的激发,研究人员使用量子气体显微镜将其识别为自旋子和完全子。科学,这个问题 p。186 量子气体显微镜用于在充满相互作用的 6Li 原子的一维光学晶格中跟踪自旋子和完全子。基本粒子带有几个量子数,例如电荷和自旋。然而,在强相互作用粒子的集合中,出现的自由度可能与单个成分的自由度有根本的不同。例如,一维系统由携带自旋(自旋)或电荷(完全子)的独立准粒子描述。在这里,我们报告了在去除超冷原子的费米-哈伯德链中的粒子后,真实空间中自旋和电荷激发的动力学解除限制。使用空间和时间分辨量子气体显微镜,我们通过自旋和电荷相关性中的特征跟踪激发的演变。通过评估多点相关器,
更新日期:2020-01-09
down
wechat
bug