当前位置: X-MOL 学术Science › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol
Science ( IF 56.9 ) Pub Date : 2020-01-09 , DOI: 10.1126/science.aaw1108
Zhu Jin 1, 2 , Liang Wang 1 , Erik Zuidema 3 , Kartick Mondal 4 , Ming Zhang 5 , Jian Zhang 2 , Chengtao Wang 2 , Xiangju Meng 2 , Hengquan Yang 5 , Carl Mesters 6 , Feng-Shou Xiao 1, 2
Affiliation  

Confining peroxide to make methanol In principle, hydrogen peroxide would be an efficient oxidant for the conversion of methane to methanol under mild conditions. In practice, however, it is currently too expensive to produce the peroxide ahead of time for this purpose. Jin et al. report a catalyst system that generates and concentrates hydrogen peroxide for immediate reaction with methane. A hydrophobically coated zeolite keeps the peroxide close to the gold and palladium active site, where incoming methane is then selectively oxidized to methanol. Science, this issue p. 193 A catalyst system concentrates hydrogen peroxide and methane in close proximity for efficient methanol synthesis. Selective partial oxidation of methane to methanol suffers from low efficiency. Here, we report a heterogeneous catalyst system for enhanced methanol productivity in methane oxidation by in situ generated hydrogen peroxide at mild temperature (70°C). The catalyst was synthesized by fixation of AuPd alloy nanoparticles within aluminosilicate zeolite crystals, followed by modification of the external surface of the zeolite with organosilanes. The silanes appear to allow diffusion of hydrogen, oxygen, and methane to the catalyst active sites, while confining the generated peroxide there to enhance its reaction probability. At 17.3% conversion of methane, methanol selectivity reached 92%, corresponding to methanol productivity up to 91.6 millimoles per gram of AuPd per hour.

中文翻译:

用于甲烷氧化制甲醇中原位过氧化物的疏水性沸石改性

限制过氧化物制造甲醇 原则上,过氧化氢是在温和条件下将甲烷转化为甲醇的有效氧化剂。然而,实际上,目前为此目的提前生产过氧化物成本太高。金等人。报告了一种催化剂系统,该系统可生成并浓缩过氧化氢以立即与甲烷反应。疏水涂层沸石使过氧化物靠近金和钯的活性位点,然后进入的甲烷被选择性地氧化成甲醇。科学,这个问题 p。193 催化剂系统将过氧化氢和甲烷浓缩在附近,以实现高效的甲醇合成。甲烷选择性部分氧化为甲醇的效率低下。这里,我们报告了一种多相催化剂系统,通过在温和的温度 (70°C) 下原位生成的过氧化氢来提高甲烷氧化中甲醇的生产率。该催化剂是通过将 AuPd 合金纳米粒子固定在铝硅酸盐沸石晶体中,然后用有机硅烷改性沸石的外表面来合成的。硅烷似乎允许氢、氧和甲烷扩散到催化剂活性位点,同时将生成的过氧化物限制在那里以提高其反应概率。在甲烷转化率为 17.3% 时,甲醇选择性达到 92%,对应于每小时每克 AuPd 的甲醇生产率高达 91.6 毫摩尔。该催化剂是通过将 AuPd 合金纳米粒子固定在铝硅酸盐沸石晶体中,然后用有机硅烷改性沸石的外表面来合成的。硅烷似乎允许氢、氧和甲烷扩散到催化剂活性位点,同时将生成的过氧化物限制在那里以提高其反应概率。在甲烷转化率为 17.3% 时,甲醇选择性达到 92%,对应于每小时每克 AuPd 的甲醇生产率高达 91.6 毫摩尔。该催化剂是通过将 AuPd 合金纳米粒子固定在铝硅酸盐沸石晶体中,然后用有机硅烷改性沸石的外表面来合成的。硅烷似乎允许氢、氧和甲烷扩散到催化剂活性位点,同时将生成的过氧化物限制在那里以提高其反应概率。在甲烷转化率为 17.3% 时,甲醇选择性达到 92%,对应于每小时每克 AuPd 的甲醇生产率高达 91.6 毫摩尔。
更新日期:2020-01-09
down
wechat
bug