当前位置: X-MOL 学术Knowl. Based Syst. › 论文详情
A comprehensive exploration of semantic relation extraction via pre-trained CNNs
Knowledge-Based Systems ( IF 5.101 ) Pub Date : 2020-01-10 , DOI: 10.1016/j.knosys.2020.105488
Qing Li; Lili Li; Weinan Wang; Qi Li; Jiang Zhong

Semantic relation extraction between entity pairs is a crucial task in information extraction from text. In this paper, we propose a new pre-trained network architecture for this task, and it is called the XM-CNN. The XM-CNN utilizes word embedding and position embedding information.It is designed to reinforce the contextual output from the MT-DNNKD pre-trained model. Our model effectively utilized an entity-aware attention mechanisms to detected the features and also adopts and applies more relation-specific pooling attention mechanisms applied to it. The experimental results show that the XM-CNN achieves state-of-the-art results on the SemEval-2010 task 8, and a thorough evaluation of the method is conducted.
更新日期:2020-01-11

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug