当前位置: X-MOL 学术Int. J. Refract. Met. Hard Mater. › 论文详情
Sintering behavior of molybdenum‑copper and tungsten‑copper alloys by using ultrafine molybdenum and tungsten powders as raw materials
International Journal of Refractory Metals & Hard Materials ( IF 2.794 ) Pub Date : 2020-01-10 , DOI: 10.1016/j.ijrmhm.2020.105194
He Zhang; Wei-Cheng Cao; Chun-Yang Bu; Kai He; Kuo-Chih Chou; Guo-Hua Zhang

In this paper, high quality Mo-(10–40) wt% Cu and W-(10–40) wt% Cu alloys were prepared by powder metallurgy using the ultrafine molybdenum and tungsten powders as raw materials. The molybdenum powder with the size of 100–200 nm and tungsten powder with the size of 50–100 nm were prepared by a two-step reduction-process composed of an insufficient carbothermal reduction reaction and the following deep reduction reaction by hydrogen. From the experimental results, it was concluded that at the sintering temperature of 1200 °C to 1300 °C, relative densities of the Mo-(10–40) wt% Cu and W-(10–40) wt% Cu sintered blocks can reach >98%, and at the same time, excellent physical and mechanical properties were achieved. Meanwhile, the larger the content of copper in the alloy, the lower the temperature required for densification. At 1300 °C, the relative density, microhardness and thermal conductivity of the Mo-10 wt% Cu and W-10 wt% Cu sintered blocks are 98.83% and 99.36%, 167 HV and 283 HV, 138.38 W·m−1·k−1 and 154.15 W·m−1·k−1, respectively. Whereas, at 1200 °C, the relative density, microhardness and thermal conductivity of the Mo-40 wt% Cu and W-40 wt% Cu sintered block are 99.68% and 98.87%, 150 HV and 207 HV, 138.38 W·m−1·k−1 and 154.15 W·m−1·k−1, respectively. The present method was much more convenient relative to the traditional infiltration method.
更新日期:2020-01-11

 

全部期刊列表>>
宅家赢大奖
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
舒伟
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
香港大学化学系刘俊治
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug