当前位置: X-MOL 学术J. Photochem. Photobiol. A Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photoelectrocatalytic CO2 reduction to ethanol via graphite-supported and functionalized TiO2 nanowires photocathode
Journal of Photochemistry and Photobiology A: Chemistry ( IF 4.1 ) Pub Date : 2020-01-10 , DOI: 10.1016/j.jphotochem.2020.112368
Liwen Wang , Yan Wei , Ran Fang , Jinyuan Wang , Xiaogang Yu , Jiazang Chen , Huanwang Jing

The photoelectrocatalytic CO2 reduction into value-added carbon-based energetic molecules is a promising strategy to store solar energy into chemicals, which lessen the concentration of atmospheric contamination. In this study, the graphitic supported and multiple functionalized nanowire TiO2 semiconductor was firstly used to CO2 reduction with water under photoelectrocatalytic conditions. These photocathodes of R-TiO2@GS were designed to be functionalized by organic ligands that catch CO2 and control the C-C coupling as the Calvin cycle in natural plants. These new organic–inorganic composite electrodes were facile to be prepared and well characterized by using NMR, UV–vis, FTIR, PL, TRPL, EIS and XPS spectra; XRD patterns; SEM, TEM images. The transient absorption spectra of photocathodes demonstrate the efficiency of electron transfer between the Eosin Y and semiconductor, ensuring CO2 reduction. Their Mott–Schottky plots show that the flat band potentials are improved by organic ligands, favoring the ethanol production. The light quantum efficiency of the best photoelectrocatalytic cell of S-TiO2@GS│SCE│Pt reaches to 1.0 % that is 2 times better than natural plant. To better understand the working process of the photoelectrocatalytic cell, a plausible mechanism of CO2 reduction in water was carefully proposed as well.



中文翻译:

石墨担载功能化的TiO 2纳米线光电阴极光电催化将CO 2还原为乙醇

将光电催化CO 2还原为增值的碳基高能分子是将太阳能存储为化学物质的一种有前途的策略,可减少大气污染的浓度。在这项研究中,首先将石墨支撑和多功能化的纳米线TiO 2半导体用于在光电催化条件下用水还原CO 2。这些R-TiO 2 @GS的光电阴极设计为通过捕获CO 2的有机配体进行功能化并控制CC耦合作为天然植物中的卡尔文循环。这些新的有机-无机复合电极很容易制备,并且可以通过NMR,UV-vis,FTIR,PL,TRPL,EIS和XPS光谱进行很好的表征。XRD图样;SEM,TEM图像。光电阴极的瞬态吸收光谱证明了曙红Y和半导体之间电子转移的效率,从而确保了CO 2的还原。他们的Mott–Schottky图表明,有机配体可改善平带势,有利于乙醇的生产。最佳S-TiO 2光电催化电池的光量子效率@GS│SCE│Pt达到1.0%,是天然植物的2倍。为了更好地了解光电催化电池的工作过程,还精心提出了一种可行的在水中还原CO 2的机制。

更新日期:2020-01-10
down
wechat
bug