当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production
Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2020-01-10 , DOI: 10.1016/j.apcatb.2020.118602
Jie Xiong , Xibao Li , Juntong Huang , Xiaoming Gao , Zhi Chen , Jiyou Liu , Hai Li , Bangbang Kang , Wenqing Yao , Yongfa Zhu

Reduced graphene oxide modified black phosphorus quantum dots ([email protected]) were obtained through surface modification of BPQDs with rGO via an ultrasound-assisted liquid phase method. The [email protected] could effectively enhance the chemical and structural stability of BPQDs. Zero-dimension [email protected] were firmly anchored on mesoporous g-C3N4 (CN) via a self-trapping pore confinement effect and π-π interactions to form CN/[email protected], which remarkably improved the photoelectric properties of CN. The responsive wavelength of CN/[email protected] could be extended to 800 nm. The kinetic constant of Rhodamine B and tetracycline degradation reached 0.183 and 0.0194 min−1, respectively. The H2O2 production rate of CN/[email protected] was 2.6 times that of porous CN. The improved photocatalytic performance and remarkable increase in free radicals are attributed to the formation of n-n type high-low junctions as well as the internal electric field based on different Fermi levels between CN and BPQDs. These collectively promote spatial separation of photogenerated carriers.



中文翻译:

具有延伸的空间电荷分离能力的CN / rGO @ BPQDs高-低结,可用于光催化降解和H2O2的产生

通过超声辅助液相法用rGO对BPQD进行表面修饰,获得了还原的氧化石墨烯修饰的黑磷量子点([受电子邮件保护])。受保护的电子邮件可以有效增强BPQD的化学和结构稳定性。零维(受电子邮件保护)通过自陷孔限制作用和π-π相互作用牢固地锚定在介孔gC 3 N 4(CN)上,形成CN / [受电子邮件保护],从而显着提高了CN的光电性能。CN / [受电子邮件保护]的响应波长可以扩展到800 nm。若丹明B和四环素降解的动力学常数分别达到0.183和0.0194 min -1。H 2 O 2CN / [受电子邮件保护]的生产率是多孔CN的2.6倍。改进的光催化性能和自由基的显着增加归因于nn型高低结的形成以及基于CN和BPQD之间不同费米能级的内部电场。这些共同促进了光生载流子的空间分离。

更新日期:2020-01-10
down
wechat
bug