当前位置: X-MOL 学术J. Neuroeng. Rehabil. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems.
Journal of NeuroEngineering and Rehabilitation ( IF 5.1 ) Pub Date : 2020-01-10 , DOI: 10.1186/s12984-019-0639-0
Daniel Pinto 1, 2 , Mauricio Garnier 3 , Jason Barbas 4, 5 , Shuo-Hsiu Chang 6 , Susan Charlifue 7, 8 , Edelle Field-Fote 9, 10 , Catherine Furbish 9 , Candy Tefertiller 11 , Chaithanya K Mummidisetty 12, 13 , Heather Taylor 14, 15 , Arun Jayaraman 13, 16 , Allen W Heinemann 17
Affiliation  

BACKGROUND We know little about the budget impact of integrating robotic exoskeleton over-ground training into therapy services for locomotor training. The purpose of this study was to estimate the budget impact of adding robotic exoskeleton over-ground training to existing locomotor training strategies in the rehabilitation of people with spinal cord injury. METHODS A Budget Impact Analysis (BIA) was conducted using data provided by four Spinal Cord Injury (SCI) Model Systems rehabilitation hospitals. Hospitals provided estimates of therapy utilization and costs about people with spinal cord injury who participated in locomotor training in the calendar year 2017. Interventions were standard of care walking training including body-weight supported treadmill training, overground training, stationary robotic systems (i.e., treadmill-based robotic gait orthoses), and overground robotic exoskeleton training. The main outcome measures included device costs, training costs for personnel to use the device, human capital costs of locomotor training, device demand, and the number of training sessions per person with SCI. RESULTS Robotic exoskeletons for over-ground training decreased hospital costs associated with delivering locomotor training in the base case analysis. This analysis assumed no difference in intervention effectiveness across locomotor training strategies. Providing robotic exoskeleton overground training for 10% of locomotor training sessions over the course of the year (range 226-397 sessions) results in decreased annual locomotor training costs (i.e., net savings) between $1114 to $4784 per annum. The base case shows small savings that are sensitive to parameters of the BIA model which were tested in one-way sensitivity analyses, scenarios analyses, and probability sensitivity analyses. The base case scenario was more sensitive to clinical utilization parameters (e.g., how often devices sit idle and the substitution of high cost training) than device-specific parameters (e.g., robotic exoskeleton device cost or device life). Probabilistic sensitivity analysis simultaneously considered human capital cost, device cost, and locomotor device substitution. With probabilistic sensitivity analysis, the introduction of a robotic exoskeleton only remained cost saving for one facility. CONCLUSIONS Providing robotic exoskeleton for over-ground training was associated with lower costs for the locomotor training of people with SCI in the base case analyses. The analysis was sensitive to parameter assumptions.

中文翻译:

在四个SCI模型系统中,脊髓外伤后机器人外骨骼用于运动训练的预算影响分析。

背景技术我们几乎不知道将机器人外骨骼地面训练集成到运动训练治疗服务中的预算影响。这项研究的目的是评估在现有的运动训练策略中增加机器人外骨骼地面训练对脊髓损伤患者康复的预算影响。方法使用四家脊髓损伤(SCI)模型系统康复医院提供的数据进行了预算影响分析(BIA)。医院提供了有关在2017日历年参加运动训练的脊髓损伤患者的治疗利用率和费用的估计。干预是护理步行训练的标准,包括体重支持的跑步机训练,地面训练,固定机器人系统(即,基于跑步机的步态矫形器)和地面机器人外骨骼训练。主要结果指标包括器械成本,使用器械人员的培训成本,运动训练的人力资本成本,器械需求以及每位SCI人的培训次数。结果在基础病例分析中,用于地面训练的机器人外骨骼降低了与进行运动训练相关的医院成本。该分析假设在运动训练策略上干预效果无差异。在一年的过程中(范围为226-397次),提供机器人外骨骼地面训练为10%的运动训练将导致每年的运动训练成本(即,净节省)减少1114美元至4784美元之间。基本案例显示了对BIA模型参数敏感的少量节省,这些储蓄已通过单向敏感性分析,方案分析和概率敏感性分析进行了测试。与特定于设备的参数(例如,机器人外骨骼设备的成本或设备寿命)相比,基本情况对临床利用参数(例如,设备闲置的频率和高成本培训的替代)更加敏感。概率敏感性分析同时考虑了人力资本成本,设备成本和运动设备替代。通过概率敏感性分析,引进机器人外骨骼仅能节省一个机构的成本。结论在基础病例分析中,提供机器人外骨骼进行地面训练与降低SCI患者运动训练的成本有关。该分析对参数假设敏感。
更新日期:2020-04-22
down
wechat
bug