当前位置: X-MOL 学术Appl. Phys. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Role of finite-size effect in BiFeO3 nanoparticles to enhance ferromagnetism and microwave absorption
Applied Physics Letters ( IF 3.5 ) Pub Date : 2020-01-06 , DOI: 10.1063/1.5132780
Yang Hong 1 , Jun Li 1 , Han Bai 1 , Zhenjia Song 1 , Guangmao Li 1 , Ming Wang 1 , Zhongxiang Zhou 1
Affiliation  

Exploring the performance of nanoscale multiferroic materials is a significant challenge because the physical properties of these materials vary dramatically on this scale. In the present work, BiFeO3 (BFO) nanoparticles are synthesized by a facile sol-gel method, producing homogeneous spherical nanoparticles whose Raman modes and binding energies coincide with pure rhombohedral perovskite BFO. The dramatic magnetic properties of nanoscale BFO with diameters in the range of 50–130 nm are explored by analyzing the temperature and field dependence of magnetization, and detailed zero-field cooling and field cooling magnetization curves show that interparticle interactions play a constructive role in increasing the magnetic response. Moreover, BFO nanoparticles have two absorption regions in the range of 2–18 GHz, and the minimum reflection loss is −18 dB. The finite-size effect is discussed as the primary mechanism for enhancing the ferromagnetism and microwave absorption, and the results provide a feasible route for designing multifunctional materials.Exploring the performance of nanoscale multiferroic materials is a significant challenge because the physical properties of these materials vary dramatically on this scale. In the present work, BiFeO3 (BFO) nanoparticles are synthesized by a facile sol-gel method, producing homogeneous spherical nanoparticles whose Raman modes and binding energies coincide with pure rhombohedral perovskite BFO. The dramatic magnetic properties of nanoscale BFO with diameters in the range of 50–130 nm are explored by analyzing the temperature and field dependence of magnetization, and detailed zero-field cooling and field cooling magnetization curves show that interparticle interactions play a constructive role in increasing the magnetic response. Moreover, BFO nanoparticles have two absorption regions in the range of 2–18 GHz, and the minimum reflection loss is −18 dB. The finite-size effect is discussed as the primary mechanism for enhancing the ferromagnetism and microwave absorption, and the results provide a feasible ...

中文翻译:

有限尺寸效应在 BiFeO3 纳米颗粒中对增强铁磁性和微波吸收的作用

探索纳米级多铁性材料的性能是一项重大挑战,因为这些材料的物理性质在这个尺度上变化很大。在目前的工作中,BiFeO3 (BFO) 纳米颗粒通过简便的溶胶-凝胶法合成,生产出均质的球形纳米颗粒,其拉曼模式和结合能与纯菱形钙钛矿 BFO 一致。通过分析磁化强度的温度和场依赖性,探索了直径在 50-130 nm 范围内的纳米级 BFO 的显着磁性,详细的零场冷却和场冷却磁化曲线表明粒子间相互作用在增加磁响应。此外,BFO 纳米粒子在 2-18 GHz 范围内有两个吸收区域,最小反射损耗为-18 dB。有限尺寸效应被认为是增强铁磁性和微波吸收的主要机制,结果为设计多功能材料提供了可行的途径。探索纳米级多铁性材料的性能是一项重大挑战,因为这些材料的物理性质各不相同在这个规模上显着。在目前的工作中,BiFeO3 (BFO) 纳米颗粒通过简便的溶胶-凝胶法合成,生产出均质的球形纳米颗粒,其拉曼模式和结合能与纯菱形钙钛矿 BFO 一致。通过分析磁化强度的温度和场依赖性,探索了直径在 50-130 nm 范围内的纳米级 BFO 的显着磁性,详细的零场冷却和场冷却磁化曲线表明,粒子间相互作用在增加磁响应方面起着建设性作用。此外,BFO纳米粒子在2-18 GHz范围内有两个吸收区域,最小反射损耗为-18 dB。讨论了有限尺寸效应是增强铁磁性和微波吸收的主要机制,结果提供了一种可行的...
更新日期:2020-01-06
down
wechat
bug