当前位置: X-MOL 学术ACS Appl. Polym. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Regenerative Polymer Blend Composed of Glycylglycine ethyl ester-substituted Polyphosphazene and Poly (lactic-co-glycolic acid).
ACS Applied Polymer Materials ( IF 4.4 ) Pub Date : 2020-01-15 , DOI: 10.1021/acsapm.9b00993
Kenneth S Ogueri 1, 2 , Kennedy S Ogueri 3 , Harry R Allcock 3 , Cato T Laurencin 1, 2, 4, 5, 6
Affiliation  

In the pursuit of continuous improvement in the area of biomaterial design, blends of mixed-substituent polyphosphazenes and poly(lactic acid–glycolic acid) (PLGA) were prepared, and their morphology of phase distributions for the first time was studied. The degradation mechanism and osteocompatibility of the blends were also evaluated for their use as regenerative materials. Poly[(ethylphenylalanato)25(glycine ethylglycinato)75phosphazene] (PNEPAGEG) and poly[(glycine ethylglycinato)75(phenylphenoxy)25phosphazene] (PNGEGPhPh) were blended with PLGA at various weight ratios to yield different blends, namely PNEPAGEG–PLGA 25:75, PNEPAGEG–PLGA 50:50, PNGEGPhPh–PLGA 25:75, and PNGEGPhPh–PLGA 50:50. The molecular interactions, domain sizes, and phase distributions of the blends were confirmed by atomic force microscopy (AFM) as the PNEPAGEG–PLGA and PNGEGPhPh–PLGA blends showed different domain sizes and phase distributions. Because of the extensive hydrogen bonding within the two polymer components, PNEPAGEG–PLGA exhibited small-sized domains and well-distributed morphology. While for the PNGEGPhPh–PLGA blends, the presence of phenylphenol (PhPh) caused the formation of PLGA large-sized domains as the PLGA formed a continuous phase and PNGEGPhPh constituted a dispersed phase. In addition to AFM results, scanning electron microscopy–energy dispersive X-ray spectrometry (SEM-EDS), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and Fourier transform infrared spectroscopy (FTIR) results demonstrated the miscibility of the blends. The PNEPAGEG–PLGA and PNGEGPhPh–PLGA blends presented in situ 3D interconnected porous structures upon degradation in phosphate-buffered saline (PBS) media at 37 °C. However, the blends showed different mechanistic pathways to the formations of the pores. The difference in the erosion patterns could be attributed to the nature of molecular attractions that exist in the blends. Furthermore, the novel blends were able to support cell growth as compared to PLGA and accommodate cell infiltrations, which ultimately augmented the surface area for better cell–material interactions.

中文翻译:


由甘氨酰甘氨酸乙酯取代的聚磷腈和聚(乳酸-乙醇酸)组成的再生聚合物混合物。



为了追求生物材料设计领域的不断改进,制备了混合取代基聚磷腈和聚乳酸-乙醇酸(PLGA)的共混物,并首次研究了它们的相分布形态。还评估了混合物作为再生材料的降解机制和骨相容性。将聚[(乙基苯基丙酸) 25 (甘氨酸乙基甘氨酸) 75磷腈] (PNEPAGEG) 和聚[(甘氨酸乙基甘氨酸) 75 (苯基苯氧基) 25磷腈] (PNGEGPhPh) 与 PLGA 以不同的重量比混合,得到不同的混合物,即 PNEPAGEG-PLGA 25:75、PNEPAGEG–PLGA 50:50、PNGEGPhPh–PLGA 25:75 和 PNGEGPhPh–PLGA 50:50。由于 PNEPAGEG-PLGA 和 PNGEGPhPh-PLGA 共混物表现出不同的畴尺寸和相分布,因此通过原子力显微镜 (AFM) 证实了共混物的分子相互作用、畴尺寸和相分布。由于两种聚合物组分内存在广泛的氢键,PNEPAGEG-PLGA 表现出小尺寸的区域和均匀分布的形态。而对于 PNGEGPhPh-PLGA 共混物,苯基苯酚 (PhPh) 的存在导致 PLGA 大尺寸域的形成,因为 PLGA 形成连续相,PNGEGPhPh 构成分散相。除了 AFM 结果之外,扫描电子显微镜 - 能量色散 X 射线光谱 (SEM-EDS)、差示扫描量热法 (DSC)、动态机械分析 (DMA) 和傅里叶变换红外光谱 (FTIR) 结果也证明了混合。 PNEPAGEG-PLGA 和 PNGEGPhPh-PLGA 共混物在 37°C 的磷酸盐缓冲盐水 (PBS) 介质中降解后呈现原位 3D 互连多孔结构。然而,这些共混物显示出不同的孔隙形成机制。侵蚀模式的差异可能归因于共混物中存在的分子吸引力的性质。此外,与 PLGA 相比,新型混合物能够支持细胞生长并适应细胞浸润,最终增加表面积,实现更好的细胞-材料相互作用。
更新日期:2020-01-15
down
wechat
bug