当前位置: X-MOL 学术Polym. Test. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
DNA:chitosan complex, known as a drug delivery system, can create a porous scaffold
Polymer Testing ( IF 5.0 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.polymertesting.2020.106333
Pitchaya Pakornpadungsit , Thridsawan Prasopdee , Napachanok Mongkoldhumrongkul Swainson , Arkadiusz Chworos , Wirasak Smitthipong

Abstract Supramolecular structure can be formed using noncovalent interactions based on the self-assembly processes. DNA is a good example for supramolecular materials because it is able to form supramolecular structure by forming specific hydrogen bonds between its base pairs. Moreover, DNA as an anionic medium can bind with oppositely charged materials to form complex structures of various shapes and properties. This work is focused on a foam complex that is formed between negatively charged DNA and positive chitosan. Various characterizations —Fourier transformed infrared spectroscopy (FTIR), Small and Wide-angle X-ray scattering (SAXS and WAXS), scanning electron microscope (SEM), texture analyzer and differential scanning calorimetry (DSC) — are used to study the properties of this dried scaffold. The FTIR spectra presented the chemical structure of DNA and chitosan. While the SAXS power law decay has revealed that an increasing of chitosan content smoothens the surface of the structure, on the other hand, the roughness is much higher when the DNA content is increased. The melting point of the foam from the DSC scan has been identified. The mechanical property of foam is suitable for the application of scaffold, and there is no cytotoxicity of foam to the cell. It is expected that this type of biomaterial could be used in several applications such as functional material and as a drug delivery material.

中文翻译:

DNA:壳聚糖复合物,被称为药物输送系统,可以创建多孔支架

摘要 超分子结构可以通过基于自组装过程的非共价相互作用形成。DNA 是超分子材料的一个很好的例子,因为它能够通过在其碱基对之间形成特定的氢键来形成超分子结构。此外,作为阴离子介质的 DNA 可以与带相反电荷的材料结合,形成各种形状和特性的复杂结构。这项工作的重点是在带负电的 DNA 和带正电的壳聚糖之间形成的泡沫复合物。各种表征 — 傅立叶变换红外光谱 (FTIR)、小和广角 X 射线散射(SAXS 和 WAXS)、扫描电子显微镜 (SEM)、质地分析仪和差示扫描量热法 (DSC) — 用于研究这个干燥的脚手架。FTIR 光谱显示了 DNA 和壳聚糖的化学结构。虽然 SAXS 幂律衰减表明壳聚糖含量的增加会使结构表面变得光滑,但另一方面,当 DNA 含量增加时,粗糙度要高得多。已经确定了来自 DSC 扫描的泡沫的熔点。泡沫的力学性能适合支架的应用,泡沫对细胞无细胞毒性。预计这种类型的生物材料可用于多种应用,例如功能材料和药物输送材料。已经确定了来自 DSC 扫描的泡沫的熔点。泡沫的力学性能适合支架的应用,泡沫对细胞无细胞毒性。预计这种类型的生物材料可用于多种应用,例如功能材料和药物输送材料。已经确定了来自 DSC 扫描的泡沫的熔点。泡沫的力学性能适合支架的应用,泡沫对细胞无细胞毒性。预计这种类型的生物材料可用于多种应用,例如功能材料和药物输送材料。
更新日期:2020-03-01
down
wechat
bug