当前位置: X-MOL 学术J. Mater. Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing strength and plasticity by pre-introduced indent-notches in Zr36Cu64 metallic glass: A molecular dynamics simulation study
Journal of Materials Science & Technology ( IF 11.2 ) Pub Date : 2020-01-08 , DOI: 10.1016/j.jmst.2019.10.034
Shidong Feng , Lin Li , K.C. Chan , Lei Zhao , Limin Wang , Riping Liu

The deformation behavior in Zr36Cu64 metallic glasses with pre-introduced indent-notches has been studied by molecular dynamics simulation at the atomic scale. The indent-notches can trigger the formation of densely-packed clusters composed of solid-like atoms in the indent-notch affected zone. These densely-packed clusters are highly resistant to the nucleation of shear bands. Hence, there is more tendency for the shear bands to nucleate outside the indent-notch affected zone, which enlarges the deformation region and enhances both the strengthening effect and the plastic deformation ability. For indent-notched MGs, when determining the initial yielding level, there is a competition process occurring between the densely-packed clusters leading to the shear band formation outside the indent-notch affected zone and the stress-concentration localizing deformation around the notch roots. When the indent-notch depth is small, the stress-concentration around the notch root plays a dominant role, leading to the shear bands initiating from the notch root, reminiscence of the cut-notches. As the indent-notch depth increases, there are many densely-packed clusters with high resistance to deformation in the indent-notch affected zone, leading to the shear band formation from the interface between the indent-notch affected zone and the matrix. Current research findings provide a feasible means for improving the strength and the plasticity of metallic glasses at room temperature.



中文翻译:

通过预先引入Zr 36 Cu 64金属玻璃中的凹口来增强强度和可塑性:分子动力学模拟研究

Zr 36 Cu 64中的变形行为已经通过原子动力学的分子动力学模拟研究了预先引入了凹痕的金属玻璃。凹痕可以触发由凹痕影响区域中的由类固体原子组成的密集堆积的簇。这些密集堆积的簇对剪切带的形核具有很高的抵抗力。因此,剪切带更有可能在凹痕缺口影响区域外成核,从而扩大了变形区域并增强了增强效果和塑性变形能力。对于带有凹口的MG,在确定初始屈服水平时,在密集堆积的簇之间会发生竞争过程,从而导致在凹痕影响区域之外形成剪切带,并在凹痕根周围产生局部应力集中变形。当凹痕深度较小时,凹痕根周围的应力集中起主导作用,从而导致从凹痕根开始的剪切带使切痕产生回想。随着凹痕深度的增加,在凹痕影响区域中存在许多紧密堆积的簇,其具有高的抗变形性,从而导致从凹痕影响区域与基质之间的界面形成剪切带。当前的研究发现为提高金属玻璃在室温下的强度和可塑性提供了可行的手段。当凹痕深度较小时,凹痕根周围的应力集中起主导作用,从而导致从凹痕根开始的剪切带使切痕产生回想。随着凹痕深度的增加,在凹痕影响区域中存在许多紧密堆积的簇,其具有高的抗变形性,从而导致从凹痕影响区域与基质之间的界面形成剪切带。当前的研究发现为提高金属玻璃在室温下的强度和可塑性提供了可行的手段。当凹痕深度较小时,凹痕根周围的应力集中起主导作用,从而导致从凹痕根开始的剪切带使切痕产生回想。随着凹痕深度的增加,在凹痕影响区域中存在许多紧密堆积的簇,其具有高的抗变形性,从而导致从凹痕影响区域与基质之间的界面形成剪切带。当前的研究发现为提高金属玻璃在室温下的强度和可塑性提供了可行的手段。凹痕影响区有许多密集堆积的簇,对变形有很高的抵抗力,导致从凹痕影响区和基体之间的界面形成剪切带。当前的研究发现为提高金属玻璃在室温下的强度和可塑性提供了可行的手段。凹痕影响区有许多密集堆积的簇,对变形有很高的抵抗力,导致从凹痕影响区和基体之间的界面形成剪切带。当前的研究发现为提高金属玻璃在室温下的强度和可塑性提供了可行的手段。

更新日期:2020-01-08
down
wechat
bug