当前位置: X-MOL 学术Int. Math. Res. Notices › 论文详情
Analytic Extensions of Representations of *-Subsemigroups Without Polar Decomposition
International Mathematics Research Notices ( IF 1.452 ) Pub Date : 2020-01-08 , DOI: 10.1093/imrn/rnz342
Oeh D.

Let $(G,\tau )$ be a finite-dimensional Lie group with an involutive automorphism $\tau $ of $G$ and let ${{\mathfrak{g}}} = {{\mathfrak{h}}} \oplus{{\mathfrak{q}}}$ be its corresponding Lie algebra decomposition. We show that every nondegenerate strongly continuous representation on a complex Hilbert space ${\mathcal{H}}$ of an open $^\ast $-subsemigroup $S \subset G$, where $s^{\ast } = \tau (s)^{-1}$, has an analytic extension to a strongly continuous unitary representation of the 1-connected Lie group $G_1^c$ with Lie algebra $[{{\mathfrak{q}}},{{\mathfrak{q}}}] \oplus i{{\mathfrak{q}}}$. We further examine the minimal conditions under which an analytic extension to the 1-connected Lie group $G^c$ with Lie algebra ${{\mathfrak{h}}} \oplus i{{\mathfrak{q}}}$ exists. This result generalizes the Lüscher–Mack theorem and the extensions of the Lüscher–Mack theorem for $^\ast $-subsemigroups satisfying $S = S(G^\tau )_0$ by Merigon, Neeb, and Ólafsson. Finally, we prove that nondegenerate strongly continuous representations of certain $^\ast $-subsemigroups $S$ can even be extended to representations of a generalized version of an Olshanski semigroup.
更新日期:2020-01-09

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug