当前位置: X-MOL 学术Int. Math. Res. Notices › 论文详情
Homotopy Invariance of Convolution Products
International Mathematics Research Notices ( IF 1.452 ) Pub Date : 2020-01-08 , DOI: 10.1093/imrn/rnz334
Sagave S, Schwede S.

The purpose of this paper is to show that various convolution products are fully homotopical, meaning that they preserve weak equivalences in both variables without any cofibrancy hypothesis. We establish this property for diagrams of simplicial sets indexed by the category of finite sets and injections and for tame $M$-simplicial sets, with $M$ the monoid of injective self-maps of the positive natural numbers. We also show that a certain convolution product studied by Nikolaus and the 1st author is fully homotopical. This implies that every presentably symmetric monoidal $\infty $-category can be represented by a symmetric monoidal model category with a fully homotopical monoidal product.
更新日期:2020-01-09

 

全部期刊列表>>
全球疫情及响应:BMC Medicine专题征稿
欢迎探索2019年最具下载量的化学论文
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
南方科技大学
x-mol收录
南方科技大学
自然科研论文编辑服务
上海交通大学彭文杰
中国科学院长春应化所于聪-4-8
武汉工程大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug