当前位置: X-MOL 学术Anal. Bioanal. Chem. › 论文详情
Versatile derivatization for GC-MS and LC-MS: alkylation with trialkyloxonium tetrafluoroborates for inorganic anions, chemical warfare agent degradation products, organic acids, and proteomic analysis
Analytical and Bioanalytical Chemistry ( IF 3.286 ) Pub Date : 2020-01-09 , DOI: 10.1007/s00216-019-02299-8
Enea Pagliano

Abstract Analytical chemists resort to derivatization for improving the detection performance of certain categories of analytes. Within this context, alkylation reactions are regarded as an important asset for many methods based on GC-MS and LC-MS. Trialkyloxonium tetrafluoroborates (R\(_{3}\textit {O}^{+}\)[BF4]−) are powerful alkylating agents with ionic liquid properties: they are nonvolatile salts soluble in water which are easier and safer to handle with respect to common alkylating agents like diazomethane. R\(_{3}\textit {O}^{+}\)[BF4]− can perform the alkylation in both organic and aqueous media at pH conditions ranging from acidic to alkaline. Recent analytical applications of trialkyloxonium derivatizations include the high-precision determination of inorganic anions in complex matrices, the qualitative confirmation of chemical warfare agent degradation products in soils, the profiling of carboxylic acids in urine, and the detection of protein post-translational modifications induced by carbon dioxide. The common denominator for all methods presented can be found in the simplicity of the alkylation protocol which, in most of the cases, requires a single step addition of the reagent directly to the sample. Graphical Abstract Alkylation with trialkyloxonium salts for GC-MS and LC-MS analysis
更新日期:2020-01-09

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug