当前位置: X-MOL 学术Environ. Model. Softw. › 论文详情
Bayesian spatially varying coefficient models in the spBayes R package
Environmental Modelling & Software ( IF 4.552 ) Pub Date : 2020-01-09 , DOI: 10.1016/j.envsoft.2019.104608
Andrew O. Finley; Sudipto Banerjee

This paper describes and illustrates new functionality for fitting spatially varying coefficients models in the spBayes (version 0.4–2) R package. The new spSVC function uses a computationally efficient Markov chain Monte Carlo algorithm and extends current spBayes functions, that fit only space-varying intercept regression models, to fit independent or multivariate Gaussian process random effects for any set of columns in the regression design matrix. Newly added OpenMP parallelization options for spSVC are discussed and illustrated, as well as helper functions for joint and point-wise prediction and model fit diagnostics. The utility of the proposed models is illustrated using a PM10 analysis over central Europe.
更新日期:2020-01-09

 

全部期刊列表>>
智控未来
聚焦商业经济政治法律
跟Nature、Science文章学绘图
控制与机器人
招募海内外科研人才,上自然官网
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
x-mol收录
湖南大学化学化工学院刘松
上海有机所
李旸
南方科技大学
西湖大学
X-MOL
支志明
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug