当前位置: X-MOL 学术J. Mech. Behav. Biomed. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In vitro characterization of a novel magnetic fibrin-agarose hydrogel for cartilage tissue engineering.
Journal of the Mechanical Behavior of Biomedical Materials ( IF 3.3 ) Pub Date : 2020-01-09 , DOI: 10.1016/j.jmbbm.2020.103619
Ana Belén Bonhome-Espinosa 1 , Fernando Campos 2 , Daniel Durand-Herrera 2 , José Darío Sánchez-López 3 , Sébastien Schaub 4 , Juan D G Durán 1 , Modesto T Lopez-Lopez 1 , Víctor Carriel 2
Affiliation  

The encapsulation of cells into biopolymer matrices enables the preparation of engineered substitute tissues. Here we report the generation of novel 3D magnetic biomaterials by encapsulation of magnetic nanoparticles and human hyaline chondrocytes within fibrin-agarose hydrogels, with potential use as articular hyaline cartilage-like tissues. By rheological measurements we observed that, (i) the incorporation of magnetic nanoparticles resulted in increased values of the storage and loss moduli for the different times of cell culture; and (ii) the incorporation of human hyaline chondrocytes into nonmagnetic and magnetic fibrin-agarose biomaterials produced a control of their swelling capacity in comparison with acellular nonmagnetic and magnetic fibrin-agarose biomaterials. Interestingly, the in vitro viability and proliferation results showed that the inclusion of magnetic nanoparticles did not affect the cytocompatibility of the biomaterials. What is more, immunohistochemistry showed that the inclusion of magnetic nanoparticles did not negatively affect the expression of type II collagen of the human hyaline chondrocytes. Summarizing, our results suggest that the generation of engineered hyaline cartilage-like tissues by using magnetic fibrin-agarose hydrogels is feasible. The resulting artificial tissues combine a stronger and stable mechanical response, with promising in vitro cytocompatibility. Further research would be required to elucidate if for longer culture times additional features typical of the extracellular matrix of cartilage could be expressed by human hyaline chondrocytes within magnetic fibrin-agarose hydrogels.



中文翻译:

用于软骨组织工程的新型磁性纤维蛋白琼脂糖水凝胶的体外表征。

将细胞封装到生物聚合物基质中可以制备工程化的替代组织。在这里我们报告通过纤维纳米琼脂糖水凝胶内的磁性纳米粒子和人类透明软骨细胞的封装,产生了新型的3D磁性生物材料,并有可能用作关节透明软骨样组织。通过流变学测量,我们观察到:(i)磁性纳米颗粒的掺入导致细胞培养不同时间的储能值和模量损失增加;(ii)与无细胞非磁性和磁性纤维蛋白-琼脂糖生物材料相比,将人透明软骨细胞掺入非磁性和磁性纤维蛋白-琼脂糖生物材料中可控制其溶胀能力。有趣的是,体外生存能力和增殖结果表明,磁性纳米颗粒的包裹不会影响生物材料的细胞相容性。此外,免疫组织化学表明,磁性纳米颗粒的加入不会对人类透明软骨细胞的II型胶原蛋白表达产生负面影响。总之,我们的结果表明通过使用磁性纤维蛋白-琼脂糖水凝胶生成工程化的透明软骨样组织是可行的。所得的人造组织结合了更强且稳定的机械反应,并有望在体外细胞相容性。对于较长的培养时间,如果在纤维蛋白琼脂糖水凝胶中人透明软骨细胞可以表达软骨细胞外基质的典型特征,则需要进一步的研究来阐明。

更新日期:2020-01-09
down
wechat
bug