当前位置: X-MOL 学术Adv. Math. › 论文详情
Higher order convergence rates in theory of homogenization II: Oscillatory initial data
Advances in Mathematics ( IF 1.494 ) Pub Date : 2020-01-08 , DOI: 10.1016/j.aim.2019.106960
Sunghan Kim; Ki-Ahm Lee

We establish higher order convergence rates in periodic homogenization of fully nonlinear uniformly parabolic Cauchy problems accompanied with rapidly oscillating initial data. Such result is new even for linear problems. Here we construct higher order initial layer and interior correctors, which describe the oscillatory behavior near the initial and interior time zone of the domain. To construct higher order correctors, we develop a regularity theory in macroscopic scales, and prove an exponential decay estimate for initial layer correctors.

The higher order expansion requires an iteration process: successively correcting the initial layer, then the interior. This leads to a more complicated asymptotic expansion, as compared to the non-oscillating data case, and this complexity is present even in the linear case.

A notable observation for fully nonlinear operators is that even if the given operator is space-time periodic, the interior correctors become aperiodic in the time variable as we proceed with the iteration process. Moreover, each interior corrector of higher order is paired with a space-time periodic version, and the difference between the two decays exponentially fast with time.

更新日期:2020-01-08

 

全部期刊列表>>
施普林格自然
欢迎访问IOP中国网站
GIANT
自然科研线上培训服务
ACS ES&T Engineering
自然职场线上招聘会
ACS ES&T Water
产业、创新与基础设施
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
北大
刘立明
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
曾林
天津大学
何振宇
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug