当前位置: X-MOL 学术Int. J. Geograph. Inform. Sci. › 论文详情
Estimating real-time high-street footfall from Wi-Fi probe requests
International Journal of Geographical Information Science ( IF 3.733 ) Pub Date : 2019-03-17 , DOI: 10.1080/13658816.2019.1587616
Balamurugan Soundararaj; James Cheshire; Paul Longley

The accurate measurement of human activity with high spatial and temporal granularity is crucial for understanding the structure and function of the built environment. With increasing mobile ownership, the Wi-Fi ‘probe requests’ generated by mobile devices can act as a cheap, scalable and real-time source of data for establishing such measures. The two major challenges we face in using these probe requests for estimating human activity are: filtering the noise generated by the uncertain field of measurement and clustering anonymised probe requests generated by the same devices together without compromising the privacy of the users. In this paper, we demonstrate that we can overcome these challenges by using class intervals and a novel graph-based technique for filtering and clustering the probe requests which in turn, enables us to reliably measure real-time pedestrian footfall at retail high streets.

更新日期:2020-01-08

 

全部期刊列表>>
欢迎访问IOP中国网站
自然职场线上招聘会
GIANT
产业、创新与基础设施
自然科研线上培训服务
材料学研究精选
胸腔和胸部成像专题
屿渡论文,编辑服务
何川
苏昭铭
陈刚
姜涛
李闯创
李刚
北大
隐藏1h前已浏览文章
课题组网站
新版X-MOL期刊搜索和高级搜索功能介绍
ACS材料视界
天合科研
x-mol收录
上海纽约大学
陈芬儿
厦门大学
何振宇
史大永
吉林大学
卓春祥
张昊
杨中悦
试剂库存
down
wechat
bug