当前位置: X-MOL 学术ChemElectroChem › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasma‐Enabled Ternary SnO2@Sn/Nitrogen‐Doped Graphene Aerogel Anode for Sodium‐Ion Batteries
ChemElectroChem ( IF 3.5 ) Pub Date : 2020-02-12 , DOI: 10.1002/celc.201901999
Yujie Ma 1 , Qianqian Wang 1 , Li Liu 1 , Shuyue Yao 1 , Wenjie Wu 1 , Zhongyue Wang 1 , Peng Lv 1 , Jiajin Zheng 1 , Kehan Yu 1 , Wei Wei 1 , Kostya Ken Ostrikov 2, 3
Affiliation  

SnO2‐based sodium‐ion batteries usually suffer from rapid capacity fading during the sodiation/desodiation caused by aggregation and cracking of Sn and irreversible formation of Na2O. In this respect, we design a ternary SnO2@Sn core‐shell structure decorated on a nitrogen‐doped graphene aerogel (SnO2@Sn/NGA), which is fabricated by using a microwave plasma‐based process. The converted Na2O can prevent agglomeration of Sn, thus stabilizing the structure during the cycles. Close contact between Na2O and Sn ensures Na+ ion diffusion to the Sn core and reversible conversion of Snurn:x-wiley:21960216:media:celc201901999:celc201901999-math-0001 SnO2. Moreover, the deoxygenation effect of the plasma on NGA improves its degree of graphitization and electrical conductivity, which substantially improves the electrode rate performance. As a result, the SnO2@Sn/NGA anode delivers a high initial discharge capacity of 448.5 mAh g−1 at 100 mA g−1. Importantly, this unique nanohybrid electrode design can be extended to advanced anode materials for both lithium‐ and sodium‐ion batteries.

中文翻译:

用于钠离子电池的等离子三元SnO2 @ Sn /氮掺杂石墨烯气凝胶阳极

基于SnO 2的钠离子电池通常会在因锡的聚集和裂化以及不可逆的Na 2 O形成而导致的成盐/脱盐过程中快速容量衰减。为此,我们设计了三元SnO 2 @Sn核壳结构在掺氮石墨烯气凝胶(SnO 2 @ Sn / NGA)上进行装饰,该气凝胶是使用基于微波等离子体的工艺制成的。转化的Na 2 O可以防止Sn的团聚,从而在循环过程中稳定结构。Na 2 O和Sn之间的紧密接触可确保Na +离子扩散到Sn核中以及Sn可逆转化Sn ur:x-wiley:21960216:media:celc201901999:celc201901999-math-0001 SnO 2。此外,等离子体对NGA的脱氧作用提高了其石墨化程度和电导率,从而大大提高了电极速率性能。结果,SnO 2 @ Sn / NGA阳极在100 mA g -1时提供448.5 mAh g -1的高初始放电容量。重要的是,这种独特的纳米混合电极设计可以扩展到锂和钠离子电池的高级阳极材料。
更新日期:2020-02-12
down
wechat
bug