当前位置: X-MOL 学术IEEE Trans. Antennas Propag. › 论文详情
Generalized Force Approach to Point-to-Point Ionospheric Ray Tracing and Systematic Identification of High and Low Rays
IEEE Transactions on Antennas and Propagation ( IF 4.435 ) Pub Date : 2019-09-09 , DOI: 10.1109/tap.2019.2938817
Igor A. Nosikov; Maxim V. Klimenko; Gennady A. Zhbankov; Aleksey V. Podlesnyi; Vera A. Ivanova; Pavel F. Bessarab

A variant of the direct optimization method for point-to-point ionospheric ray tracing is presented. The method is well suited for applications where the launch direction of the radio wave ray is unknown, but the position of the receiver is specified instead. Iterative transformation of a candidate path to the sought-for ray is guided by a generalized force, where the definition of the force depends on the ray type. For high rays, the negative gradient of the optical path functional is used. For low rays, the transformation of the gradient is applied, converting the neighborhood of a saddle point to that of a local minimum. Knowledge about the character of the rays is used to establish a scheme for systematic identification of all relevant rays between the given points, without the need to provide an accurate initial estimate for each solution. Various applications of the method to isotropic ionosphere demonstrate its ability to resolve complex ray configurations including 3-D propagation and multi-path propagation where rays are close in the launch direction. Results of the application of the method to ray tracing between Khabarovsk and Tory show good quantitative agreement with the measured oblique ionograms.
更新日期:2020-01-07

 

全部期刊列表>>
2020新春特辑
限时免费阅读临床医学内容
ACS材料视界
科学报告最新纳米科学与技术研究
清华大学化学系段昊泓
自然科研论文编辑服务
中国科学院大学楚甲祥
中国科学院微生物研究所潘国辉
中国科学院化学研究所
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug