当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mn-Doped NiMoO4 Mesoporous Nanorods/Reduced Graphene Oxide Composite for High-Performance All-Solid-State Supercapacitor
ACS Applied Energy Materials ( IF 6.4 ) Pub Date : 2020-01-07 00:00:00 , DOI: 10.1021/acsaem.9b02238
Jingjing Yuan 1, 2 , Dachuan Yao 2 , Ling Jiang 2 , Yingrui Tao 2 , Jianfei Che 1 , Guangyu He 2 , Haiqun Chen 2
Affiliation  

Mn-doping has great influence on the structural and electrical properties of NiMoO4, which plays an important role in determining its electrochemical activities. In this work, Mn-doped NiMoO4 was prepared. Structural characterization and theoretical calculation reveal that Mn-doped NiMoO4 (Mn0.1Ni0.9MoO4) has smaller unit cell parameters and is more reactive than NiMoO4 because of the defects produced by Mn-doping. On the basis of that, we prepared a composite consisting of Mn0.1Ni0.9MoO4 mesoporous nanorods and reduced graphene oxide (Mn0.1Ni0.9MoO4/rGO), which was assembled into a symmetrical all-solid-state device as electrode material, with alkaline poly(vinyl alcohol) as solid-state electrolyte. The device shows a good specific capacitance of 109.3 F·g–1 at 1 A·g–1 in a rather wide voltage range of 0–1.8 V, exhibits an excellent cycling stability with 96.1% of the capacitance retained after 200 cycles, and delivers a high energy density of 49.2 Wh·kg–1 at 1800 W·kg–1. The all-solid-state supercapacitor owns superior flexibility and maintains 83.6% of its initial specific capacitance under the bent condition. When tested in a three-electrode system, the Mn0.1Ni0.9MoO4/rGO composite exhibits a maximum specific capacitance of 688.9 F·g–1 at 0.5 A·g–1 that is much better than NiMoO4 and Mn0.1Ni0.9MoO4. The results show that the Mn0.1Ni0.9MoO4/rGO composite stands out as a kind of transition-metal-doped electrode material for flexible all-solid-state supercapacitors.

中文翻译:

高性能全固态超级电容器的锰掺杂NiMoO 4介孔纳米棒/氧化石墨烯复合材料

Mn掺杂对NiMoO 4的结构和电学性能有很大影响,这在确定其电化学活性方面起着重要作用。在这项工作中,制备了锰掺杂的NiMoO 4。结构表征和理论计算表明,由于Mn掺杂产生的缺陷,Mn掺杂的NiMoO 4(Mn 0.1 Ni 0.9 MoO 4)具有较小的晶胞参数,并且比NiMoO 4具有更高的反应性。在此基础上,我们制备了由Mn 0.1 Ni 0.9 MoO 4介孔纳米棒和还原氧化石墨烯(Mn 0.1 Ni0.9 MoO 4 / rGO),将其组装成对称的全固态器件作为电极材料,并使用碱性聚乙烯醇作为固态电解质。该器件在0-1.8 V的相当宽的电压范围内,在1 A•g –1时显示出109.3 F·g –1的良好比电容,具有出色的循环稳定性,在200个循环后保留了96.1%的电容,并且在1800 W·kg –1时可提供49.2 Wh·kg –1的高能量密度。全固态超级电容器具有出色的柔韧性,在弯曲条件下保持其初始比电容的83.6%。在三电极系统中测试时,Mn 0.1 Ni 0.9 MoO4 / rGO复合材料在0.5 A·g –1处的最大比电容为688.9 F·g –1,比NiMoO 4和Mn 0.1 Ni 0.9 MoO 4更好。结果表明,Mn 0.1 Ni 0.9 MoO 4 / rGO复合材料是一种用于柔性全固态超级电容器的过渡金属掺杂电极材料。
更新日期:2020-01-07
down
wechat
bug