当前位置: X-MOL 学术J. Am. Chem. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electron Hopping by Interfacing Semiconducting Graphdiyne Nanosheets and Redox Molecules for Selective Electrocatalysis
Journal of the American Chemical Society ( IF 14.4 ) Pub Date : 2020-01-07 , DOI: 10.1021/jacs.9b13678
Shuyue Guo 1, 2 , Ping Yu 1, 2 , Weiqi Li 1, 2 , Yuanping Yi 1, 2 , Fei Wu 1, 2 , Lanqun Mao 1, 2
Affiliation  

Selectivity of electrocatalysts is determined not only by active sites for specific substrate interactions but also by the efficiency of electronic coupling mediated by intervening matrices. Here, we demonstrate the design of electron transport pathways to achieve catalytic specificity by interfacing redox-active methylene green (MG) and semiconducting graphdiyne (GDY), a 2D multi-layered π-staked carbon nanosheet. Optical spectroscopy, electrochemistry and computational simulation unravel the formation of MG dimers within interlayer space of GDY nanosheets and the consequential tuning of activation overpotential and electron transfer rates. The electron-hopping pathway by self-exchange of MG dimers in neighboring sheets accelerates oxidation of dihydronicotinamide adenine dinucleotide at 7.06×10-2 cm·s-1, while the electron-tunneling pathway directly through GDY film decelerates oxidation of ascorbic acid at 6.60×10-5 cm·s-1, further endowing the MG-intercalated GDY nanosheets with high selectivity in mediated bioelectrocatalysis. This study extends the applicability of GDY in selective electrolysis and provides a universal strategy for modulating electrochemical properties of low-dimensional materials with laminar subnano/nano-structure.

中文翻译:

用于选择性电催化的半导体石墨炔纳米片和氧化还原分子的界面跳跃电子

电催化剂的选择性不仅取决于特定底物相互作用的活性位点,还取决于中间基质介导的电子耦合效率。在这里,我们展示了通过将氧化还原活性亚甲基绿 (MG) 和半导体石墨炔 (GDY)(一种二维多层 π 桩碳纳米片)连接起来来实现催化特异性的电子传输途径的设计。光谱学、电化学和计算模拟揭示了 GDY 纳米片层间空间内 MG 二聚体的形成以及活化过电位和电子转移速率的相应调整。相邻片中MG二聚体自交换的电子跳跃途径加速了二氢烟酰胺腺嘌呤二核苷酸在7.06×10-2 cm·s-1处的氧化,而直接通过 GDY 膜的电子隧道通路在 6.60×10-5 cm·s-1 处减慢了抗坏血酸的氧化,进一步赋予了 MG 嵌入的 GDY 纳米片在介导的生物电催化中具有高选择性。该研究扩展了 GDY 在选择性电解中的适用性,并为调节具有层状亚纳米/纳米结构的低维材料的电化学性能提供了一种通用策略。
更新日期:2020-01-07
down
wechat
bug