当前位置: X-MOL 学术J. Membr. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhanced CO2 permeability of thermal crosslinking membrane via sulfonation/desulfonation of phenolphthalein-based cardo poly(arylene ether ketone)
Journal of Membrane Science ( IF 8.4 ) Pub Date : 2020-03-01 , DOI: 10.1016/j.memsci.2020.117824
Ruisong Xu , Lin Li , Mengjie Hou , Jiajia Xue , Yuzhe Liu , Zonglin Pan , Chengwen Song , Tonghua Wang

Abstract Thermal crosslinking membranes for gas separation have excellent plasticization resistance compared to polymeric membranes. Their low gas permeability, however, is not high enough for industrial application at low cost. In this study, a method, called the sulfonation/desulfonation of the polymeric precursor, was proposed to enhance the CO2 permeability of thermal crosslinking membranes without significantly sacrificing the CO2/CH4 selectivity. The effects of the degree of sulfonation (DS) on the polymeric chain rigidity, interchain distance, and gas separation performance of thermal crosslinking membranes were investigated using dynamic mechanical thermal analysis, a thermal gravimetric analyser coupled with a mass spectrometer, wide-angle X-ray diffraction, and gas permeation tests. Results indicated that the sulfonation/desulfonation of the polymeric precursor significantly influenced the microstructure and gas separation performance of the derived thermal crosslinking membranes. The interchain distance and microvoids of the thermal crosslinking membranes were greatly enlarged by the sulfonation and desulfonation reaction. The rigidity of the polymeric chain was improved by the formation of interchain hydrogen bonding induced by –SO3H groups, which prevent the melting of the polymeric membrane during heat treatment. The gas permeability of the thermal crosslinking membrane was markedly enhanced while the CO2/CH4 selectivity decreased as the DS increased. The CO2 permeability was up to 2.3 times higher than that of the non-sulfonated thermal crosslinking membrane. The separation performance of the derived crosslinking membranes for CO2/CH4 was positioned near or above the 2008 Robeson upper bound.

中文翻译:

通过酚酞基cardo聚(亚芳基醚酮)的磺化/脱磺化增强热交联膜的CO2渗透性

摘要 与聚合物膜相比,用于气体分离的热交联膜具有优异的抗塑化性能。然而,它们的低透气性不足以以低成本进行工业应用。在这项研究中,提出了一种称为聚合物前体磺化/脱磺化的方法,以在不显着牺牲 CO2/CH4 选择性的情况下提高热交联膜的 CO2 渗透性。使用动态机械热分析、热重分析仪与质谱仪联用、广角 X-射线分析仪研究了磺化度 (DS) 对热交联膜的聚合物链刚度、链间距离和气体分离性能的影响。射线衍射和气体渗透测试。结果表明,聚合物前体的磺化/脱磺化显着影响衍生的热交联膜的微观结构和气体分离性能。磺化和脱磺化反应大大增加了热交联膜的链间距离和微孔洞。通过-SO3H 基团诱导的链间氢键的形成,聚合物链的刚度得到了提高,这防止了聚合物膜在热处理过程中的熔化。随着 DS 的增加,热交联膜的透气性显着增强,而 CO2/CH4 选择性降低。CO2 渗透率比非磺化热交联膜高 2.3 倍。
更新日期:2020-03-01
down
wechat
bug