当前位置: X-MOL 学术Renew. Sust. Energ. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage
Renewable and Sustainable Energy Reviews ( IF 15.9 ) Pub Date : 2020-01-06 , DOI: 10.1016/j.rser.2019.109629
Paolo Gabrielli , Alessandro Poluzzi , Gert Jan Kramer , Christopher Spiers , Marco Mazzotti , Matteo Gazzani

The deployment of diverse energy storage technologies, with the combination of daily, weekly and seasonal storage dynamics, allows for the reduction of carbon dioxide (CO2) emissions per unit energy provided. In particular, the production, storage and re-utilization of hydrogen starting from renewable energy has proven to be one of the most promising solutions for offsetting seasonal mismatch between energy generation and consumption. A realistic possibility for large-scale hydrogen storage, suitable for long-term storage dynamics, is presented by salt caverns. In this contribution, we provide a framework for modeling underground hydrogen storage, with a focus on salt caverns, and we evaluate its potential for reducing the CO2 emissions within an integrated energy systems context. To this end, we develop a first-principle model, which accounts for the transport phenomena within the rock and describes the dynamics of the stored energy when injecting and withdrawing hydrogen. Then, we derive a linear reduced order model that can be used for mixed-integer linear program optimization while retaining an accurate description of the storage dynamics under a variety of operating conditions. Using this new framework, we determine the minimum-emissions design and operation of a multi-energy system with H2 storage. Ultimately, we assess the potential of hydrogen storage for reducing CO2 emissions when different capacities for renewable energy production and energy storage are available, mapping emissions regions on a plane defined by storage capacity and renewable generation. We extend the analysis for solar- and wind-based energy generation and for different energy demands, representing typical profiles of electrical and thermal demands, and different CO2 emissions associated with the electric grid.



中文翻译:

通过地下氢存储实现零排放多能源系统的季节性储能

部署各种能量存储技术,并结合每天,每周和季节性的存储动态,可以减少所提供的每单位能量的二氧化碳(CO 2)排放量。特别是,从可再生能源开始的氢的生产,存储和再利用已被证明是抵消能源生产和消费之间季节性不匹配的最有希望的解决方案之一。盐穴提出了适合长期存储动力学的大规模氢存储的现实可能性。在此贡献中,我们提供了一个用于建模地下氢存储的框架,重点是盐洞,并且我们评估了其在减少地下氢存储方面的潜力。一氧化碳2综合能源系统环境中的排放。为此,我们开发了第一性原理模型,该模型解释了岩石内部的传输现象,并描述了注入和抽取氢时储能的动力学。然后,我们导出一个线性降阶模型,该模型可用于混合整数线性程序优化,同时在各种操作条件下保留对存储动态的准确描述。使用此新框架,我们确定了具有以下特征的多能源系统的最小排放设计和运行:H2存储。最终,我们评估储氢的潜力,以减少一氧化碳2当可再生能源的生产和储能能力不同时,产生排放,在由储能和可再生发电量定义的平面上绘制排放区域。我们扩展了针对太阳能和风能发电以及针对不同能源需求的分析,这些分析代表了典型的电气和热需求曲线,以及一氧化碳2 与电网相关的排放。

更新日期:2020-01-07
down
wechat
bug