当前位置: X-MOL 学术Sol. Energy › 论文详情
Thermo-mathematical model for parabolic trough collector using a complete radiation heat transfer model – A new approach
Solar Energy ( IF 4.674 ) Pub Date : 2020-01-06 , DOI: 10.1016/j.solener.2019.12.068
B.S. Jinshah; K.R. Balasubramanian

Solar Parabolic Trough Collectors (PTC) are alternative clean solution for the thermal power plants to generate electricity and thermal energy. It can be configured to support small, medium and high temperature applications. In PTC, solar radiation is concentrated to a pipe coated selectively and enclosed in a glass tube with vacuum maintained in the annulus, through which a heat transfer fluid is circulated. Heat transfer analysis of PTC is important to determine the operating characteristics as well as for optimization of the parameters under different operating conditions. In this paper a heat transfer model is developed for receiver tube with the focus on a complete radiation heat transfer model for the annulus. For the analysis the receiver tube is divided into severe elements where the governing energy equations are discretized using Finite Volume Method. Gerhart factor is used for modelling the radiation heat transfer. View factors are computed using contour integration technique and analytical solutions. Heat transfer results are then validated with the test results obtained from Sandia National Laboratory. The results obtained show close agreement with the test results. Also the result is compared with other four published models. Based on the RMSE analysis, it is proven that our model is the best among all the four models compared.
更新日期:2020-01-07

 

全部期刊列表>>
向世界展示您的会议墙报和演示文稿
全球疫情及响应:BMC Medicine专题征稿
新版X-MOL期刊搜索和高级搜索功能介绍
化学材料学全球高引用
ACS材料视界
x-mol收录
自然科研论文编辑服务
南方科技大学
南方科技大学
西湖大学
中国科学院长春应化所于聪-4-8
复旦大学
课题组网站
X-MOL
深圳大学二维材料实验室张晗
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug