当前位置: X-MOL 学术arXiv.cs.DM › 论文详情
On the Hardness of Almost All Subset Sum Problems by Ordinary Branch-and-Bound
arXiv - CS - Discrete Mathematics Pub Date : 2020-01-04 , DOI: arxiv-2001.01078
Mustafa Kemal Tural

Given $n$ positive integers $a_1,a_2,\dots,a_n$, and a positive integer right hand side $\beta$, we consider the feasibility version of the subset sum problem which is the problem of determining whether a subset of $a_1,a_2,\dots,a_n$ adds up to $\beta$. We show that if the right hand side $\beta$ is chosen as $\lfloor r\sum_{j=1}^n a_j \rfloor$ for a constant $0 < r < 1$ and if the $a_j$'s are independentand identically distributed from a discrete uniform distribution taking values ${1,2,\dots,\lfloor 10^{n/2} \rfloor }$, then the probability that the instance of the subset sum problem generated requires the creation of an exponential number of branch-and-bound nodes when one branches on the individual variables in any order goes to $1$ as $n$ goes to infinity.
更新日期:2020-01-07

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug