当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Structural and microstructural influence on deformation and fracture of dual-phase steels
Materials Science and Engineering: A ( IF 4.081 ) Pub Date : 2020-01-07 , DOI: 10.1016/j.msea.2020.138924
Xinzhu Zheng; Hassan Ghassemi-Armaki; Ankit Srivastava

The objective of this work is to demonstrate that the mechanical response of multiphase materials is fundamentally different in an imposed deformation field that is homogeneous, versus in an imposed deformation field that is heterogeneous, at a length-scale greater than the microstructural length-scale. To this end, we focus on two dual-phase steels with significantly different nominal chemical composition and microstructure. The mechanical response of the steels is characterized by in-situ SEM tensile tests of flat dog-bone and single-edge notch specimens. The experimental results show that the dog-bone specimens of the two steels exhibit very similar mechanical response but the mechanical response of their single-edge notch specimens differs significantly. This is in contrast to any classical analysis that will predict the same mechanical response in the presence of a notch for two materials that give the same mechanical response under uniaxial tension. The high resolution in-situ tests coupled with microstructure-based digital image correlation and finite element analysis are then used to elucidate how the interlacing of imposed heterogeneous deformation field and material microstructure affects the mechanical response of these steels. Our results clearly highlight that a mechanistic analysis of multiphase materials under imposed heterogeneous deformation field must involve explicit consideration of the length-scales associated with the material microstructure.
更新日期:2020-01-07

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug