当前位置: X-MOL 学术Mater. Sci. Eng. A › 论文详情
Notch-tensile behavior of Al0.1CrFeCoNi high entropy alloy
Materials Science and Engineering: A ( IF 4.081 ) Pub Date : 2020-01-07 , DOI: 10.1016/j.msea.2020.138918
Subhasis Sinha; Mageshwari Komarasamy; Tianhao Wang; Ravi Sankar Haridas; Priyanka Agrawal; Shivakant Shukla; Saket Thapliyal; Michael Frank; Rajiv S. Mishra

Notch-tensile behavior of an Al0.1CrFeCoNi high entropy alloy (Al0.1-HEA) was studied using V-notch geometry and with local strain mapping using digital image correlation (DIC). A notch-strength ratio of 1.51 indicated notch strengthening. Further analysis of stress-strain response supplemented with microstructural analysis revealed that, while the presence of notch results in strengthening due to work hardening by twinning induced plasticity, the notch also contributes strongly to geometrical softening in the non-uniform ductility regime, and accounts for the onset of failure. The strain localization behavior of Al0.1-HEA due to the presence of V-notch was compared with three conventional alloys: Inconel 625 nickel-based superalloy, 304 stainless steel and Ti–6Al–4V titanium alloy. The study revealed that the nature of notch widening with increasing strain was dependent on material characteristics. The extent of notch widening impacted the local strain field and stress distribution, thereby influencing the propensity for crack initiation and growth. The experimental results were verified by finite element analysis.
更新日期:2020-01-07

 

全部期刊列表>>
化学/材料学中国作者研究精选
Springer Nature 2019高下载量文章和章节
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug