当前位置: X-MOL 学术Pattern Recogn. › 论文详情
Automatic Characteristic-Calibrated Registration (ACC-REG): Hippocampal Surface Registration using Eigen-graphs
Pattern Recognition ( IF 5.898 ) Pub Date : 2020-01-07 , DOI: 10.1016/j.patcog.2019.107142
Hei Long CHAN; Tsz Chun YAM; Lok Ming LUI

In this paper, we propose an efficient algorithm, the ACC-REG, to automatically extract intrinsic key characteristics on hippocampal mesh surfaces and hence compute an accurate registration mapping between them. Given a pair of hippocampal surface mesh, the proposed algorithm constructs the eigen-graphs, an intrinsic feature on the surface, on each surface as its representative. The eigen-graphs are then calibrated along the longitudinal direction of the hippocampal surfaces. Accurately corresponded intrinsic characteristics on each hippocampus can thus be extracted. As a result, the two surfaces can be registered with improved accuracy and low computation cost. Experiments on ADNI data demonstrate the effectiveness of the proposed ACC-REG model over existing methods.
更新日期:2020-01-07

 

全部期刊列表>>
Springer Nature 2019高下载量文章和章节
化学/材料学中国作者研究精选
《科学报告》最新环境科学研究
ACS材料视界
自然科研论文编辑服务
中南大学国家杰青杨华明
剑桥大学-
中国科学院大学化学科学学院
材料化学和生物传感方向博士后招聘
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug