当前位置: X-MOL 学术J. Chem. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Green's function coupled cluster simulation of the near-valence ionizations of DNA-fragments.
The Journal of Chemical Physics ( IF 3.1 ) Pub Date : 2020-01-07 , DOI: 10.1063/1.5138658
Bo Peng 1 , Karol Kowalski 2 , Ajay Panyala 3 , Sriram Krishnamoorthy 3
Affiliation  

Accurate description of the ionization process in DNA is crucial to the understanding of the DNA damage under exposure to ionizing radiation and the exploration of the potential application of DNA strands in nanoelectronics. In this work, by employing our recently developed Green's function coupled-cluster library on supercomputing facilities, we have studied the spectral functions of several guanine-cytosine (G-C) base pair structures ([G-C]n, n = 1-3) for the first time in a relatively broad near-valence regime ([-25.0, -5.0] eV) in the coupled-cluster with singles and doubles level. Our focus is to give a preliminary many-body coupled-cluster understanding and guideline of the vertical ionization energy (VIE), spectral profile, and ionization feature changes of these systems as the system size expands in this near-valence regime. The results show that, as the system size expands, even though the lowest VIEs keep decreasing, the changes of spectral function profile and the relative peak positions get unexpectedly smaller. Further analysis of the ionized states associated with the most intensive peak in the spectral functions reveals non-negligible |2h, 1p⟩'s in the ionized wave functions of the considered G-C base pair systems. The leading |2h, 1p⟩'s associated with the main ionizations from the cytosine part of the G-C base pairs feature a transition from the intra-base-pair cytosine π → π* excitation to the inter-base-pair electron excitation as the size of G-C base pairs expands, which also indicates the minimum quantum region in the many-body calculations of DNA systems.

中文翻译:

格林函数耦合了DNA片段近价电离的簇模拟。

准确描述DNA中的电离过程对于理解暴露于电离辐射下的DNA损伤以及探索DNA链在纳米电子学中的潜在应用至关重要。在这项工作中,通过在超级计算设备上采用我们最近开发的格林函数耦合簇库,我们研究了几种鸟嘌呤-胞嘧啶(GC)碱基对结构([GC] n,n = 1-3)的光谱函数。第一次在相对较宽的价态([-25.0,-5.0] eV)中出现,具有单打和双打水平。我们的重点是对随着系统尺寸在这种近价态范围内扩展而对这些系统的垂直电离能(VIE),光谱分布和电离特征变化进行初步的多体耦合簇理解和指导。结果表明,随着系统尺寸的扩大,即使最低的VIE持续减小,光谱函数轮廓和相对峰位置的变化也出乎意料地变小。对与光谱函数中最强峰相关的电离态的进一步分析显示,在所考虑的GC碱基对系统的电离波函数中,| 2h,1p⟩不可忽略。前导的| 2h,1p⟩与来自GC碱基对的胞嘧啶部分的主要电离相关,其特征是从碱基对胞嘧啶π→π*激发跃迁到碱基对间电子激发,即GC碱基对的大小会扩大,这也表示DNA系统的多体计算中的最小量子区域。光谱函数轮廓和相对峰位置的变化出乎意料地变小。对与光谱函数中最强峰相关的电离态的进一步分析显示,在所考虑的GC碱基对系统的电离波函数中,| 2h,1p⟩不可忽略。前导的| 2h,1p⟩与来自GC碱基对的胞嘧啶部分的主要电离相关,其特征是从碱基对胞嘧啶π→π*激发跃迁到碱基对间电子激发,即GC碱基对的大小会扩大,这也表示DNA系统的多体计算中的最小量子区域。光谱函数轮廓和相对峰位置的变化出乎意料地变小。对与光谱函数中最强峰相关的电离态的进一步分析显示,所考虑的GC碱基对系统的电离波函数中| 2h,1p⟩不可忽略。前导的| 2h,1p⟩与来自GC碱基对的胞嘧啶部分的主要电离相关,其特征是从碱基对胞嘧啶π→π*激发跃迁到碱基对间电子激发,即GC碱基对的大小会扩大,这也表示DNA系统的多体计算中的最小量子区域。对与光谱函数中最强峰相关的电离态的进一步分析显示,在所考虑的GC碱基对系统的电离波函数中,| 2h,1p⟩不可忽略。前导的| 2h,1p⟩与来自GC碱基对的胞嘧啶部分的主要电离相关,其特征是从碱基对胞嘧啶π→π*激发转变为碱基对间电子激发,即GC碱基对的大小会扩大,这也表示DNA系统的多体计算中的最小量子区域。对与光谱函数中最强峰相关的电离态的进一步分析显示,在所考虑的GC碱基对系统的电离波函数中,| 2h,1p⟩不可忽略。前导的| 2h,1p⟩与来自GC碱基对的胞嘧啶部分的主要电离相关,其特征是从碱基对胞嘧啶π→π*激发跃迁到碱基对间电子激发,即GC碱基对的大小会扩大,这也表示DNA系统的多体计算中的最小量子区域。
更新日期:2020-01-07
down
wechat
bug