当前位置: X-MOL 学术Metall. Mater. Trans. A. › 论文详情
A Data-Driven Scheme for Quantitative Analysis of Texture
Metallurgical and Materials Transactions A ( IF 1.985 ) Pub Date : 2019-12-01 , DOI: 10.1007/s11661-019-05529-x
Yafei Wang, Chenfan Yu, Leilei Xing, Kailun Li, Jinhan Chen, Wei Liu, Jing Ma, Zhijian Shen

Texture is the orientation distribution of crystallites in polycrystalline materials. Given the discrete orientations, Schaeben suggested to adopt statistics for quantitative analysis of texture from discrete orientations, and he also conceived a clustering algorithm to facilitate the applications of statistical methods (H. Schaeben, J Appl Crystal 26:112–121, 1993). This data-driven scheme becomes more urgent and more necessary for the oncoming fourth paradigm: data-intensive scientific discovery, which follows after experimental science, theoretical science, and computational science paradigm. This research adopts a density-based clustering algorithm, DBSCAN, to process the orientation data from an austenitic stainless steel 316 L sample fabricated by selective laser melting. It is validated that the algorithm can robustly identify the orientation cluster (or texture component or preferred orientation). The statistical methods can successfully quantify the features of the identified orientation cluster with quantified uncertainty (statistical significance), which is often lacked in the general method of orientation distribution function. It is believed that this data-driven scheme can be applied to the many aspects of texture analysis.
更新日期:2020-01-06

 

全部期刊列表>>
化学/材料学中国作者研究精选
ACS材料视界
南京大学
自然科研论文编辑服务
剑桥大学-
中国科学院大学化学科学学院
南开大学化学院周其林
课题组网站
X-MOL
北京大学分子工程苏南研究院
华东师范大学分子机器及功能材料
中山大学化学工程与技术学院
试剂库存
天合科研
down
wechat
bug